全球旧事资料 分类
于分类的还有人工神经网络方法。神经网络3为解决大复杂度问题提供了一种相对来说比较有效的简单方法,它是模仿人脑神经网络的结构和某些工作机制而建立的一种非线形预测模型,经过学习进行模式识别的。其工作机理是通过学习改变神经元之间的连接强度。神经网络有前向神经网络、反馈神经网络、自组织神经网络等,在神经网络中,由权重和网络的拓扑结构决定了它所能识别的模式类型。神经网络分类过程可以分为训练和分类两个阶段。在训练阶段,首先定义网络的拓扑结构,再对训练样本中的每个属性的值进行规范化预处理,然后用神经网络对已预处理的输入进行学习。训练完毕后,用训练好的神经网络对标识样本进行分类。最流行的神经网络学习算法是后向传播算法。后向传播算法是在多层前馈神经网络上进行学习的。这种神经网络具有一个输入层和一个输出层,在两者之间可能包含多个中间层,这些中间层叫做隐藏层。后向传播通过迭代地处理一组训练样本,将每个样本的网络预测与实际知道的类标号比较,进行学习。对于每个训练样本,修改权值,使得网络预测和实际类之间的均方误差最小。这种修改后向进行,即由输出层,经由每个隐藏层,到第一个隐藏层。一般的,权将最终收敛,学习过程停止。算法的每一次迭代包括两个阶段:前向阶段和后向阶段。在前向阶段,使用前一次迭代所得到的权值计算网络中每一个神经元的输出值。计算是向前进行的,先计算第k层神经元的输出,再计算第k+1层的输出。在后向阶段,以相反的方向应用权值更新公式,先更新k+1层的权值,再更新第k层的权值。2.3.2优缺点。神经网络法的优点是有较强的抗噪能力,对未经训练的数据也具有较好的预测分类能力。神经网络的主要缺点是用加权链连结单元的网络所表示的知识很难被人理解、学习时间较长,仅适用于时间容许的应用场合;对于如网络结构等关键参数,通常需要经验方能有效确定。
2.4基于源自关联规则挖掘概念的分类2.4.1基本思想。关联规则聚类系统是基于聚类挖掘关联规则,然后使用规
5
f则进行分类。挖掘形如Aqua
1∧Aqua
2→Acat的关联规则;其中,Aqua
1,Aqua
2是在量化属性区间上的测试,为给定训练数据的分类属性指定一个类标号。关联规则画在2D栅格上。算法扫描栅格,搜索规则的矩形聚类。由ARCS产生的聚类关联规则用于分类,其准确率与C4.5差不多,精确度比C4.5高一点。
关联分类挖掘形如co
dset→y的规则,co
dset是项属性一值对的集合,y是类标号。若给定数据集r
好听全球资料 返回顶部