相比产生畸变的物理属性问题。不同的镜头会产生不同的畸变;例如,广角镜头会造成“桶形畸变”效应,而长焦镜头会产生“枕形畸变”效应。镜头的阴影畸变降低了镜头周围区域的图像亮度。色像差会使图像周围出现色彩条纹。因此多媒体处理器需要对图像做数学变换以校正这些畸变。预处理的另外一方面是图像稳定性补偿或信号交换校正。这里,处理器常借助于涉及到传感器实时运动轮廓的外部传感器器调节所接收图像的平移运动。预处理的另外一个阶段称为白平衡。当我们看到一幅场景时,无论照明条件如何,我们的眼睛能将观看到的所有场景都转换成标准的自然光条件下的颜色。例如,我们所看到的苹果应是深红色,无论是在室内的荧光灯下还是室外的阳光下。然而,图像传感器对颜色的“感知”很大程度上取决于照明条件,因此它需要将它映射成所要求的图像以使其最终的输出看起来不受照明条件的影响。这种图像映射过程可手动或自动完成。在手动系统中,在将你的照相机对准你确定是“白色”的对象后,然后将照相机移动到待拍照所有图像的“色温”区以适应这种映射。另外一种自动白平衡(AWB)方法,使用图像传感器的输入和额外的白平衡传感器来确定什么是图像中的“真正白色”。它可调节图像中R、G和B通道的相对增益。当然,AWB比手动方法需要更多的图像处理能力,并且也是供应商提供的知识产权算法。抗马赛克、像素内插、降噪以及轮廓增强抗马赛克〔或色彩滤镜阵列插值(Demosaicki
g)〕可能是图像流水线中最重要并且计算量最大的阶段。通常各数码照相机制造商都有自己的“秘诀”,但通常可将这些方法分成几种主要的算法。双线性插值或双三次插值等非自适应算法属于最简单易行的方法,它们非常适合处理图像的平滑区域。然而,用这些简单的算法处理边缘或纹理丰富的区域时会遇到问题。自适应算法根据局部图像特点改变算法,从而可以提供较好的效果。自适应算法的一个例子是基于边缘重构。这种算法分析围绕像素的区域并且确定在哪个方向上完成内插。如果它在像素附近找到了边缘,则将沿着边缘进行插值,而不是越过边缘。另一种自适应算法是假设整个对象是恒定色调,这可以防止在个别对像中颜色梯度的突变。还有许多其它的抗马赛克技术,包括频域分析、贝叶斯判决准则,以及神经网络。颜色空间变换
f在这一阶段,将内插后的RGB图像变换为目标输出颜色空间(如果还不是合适的颜色空间)。为了压缩或在电视机上显示图像,这通常包括Rr