a
sferredtotheballwhe
hitOpposetotheexpla
atio
basedo
torqueitis
otatthee
dofthebatk
owi
gfromexperie
ceFromourmodelweca
explai
whythesweetspotis
otatthee
dofthebata
daccuratelydetermi
ethelocatio
ofthesweetspotSomeplayersbelievethathollowi
goutacyli
deri
theheadofthebata
dfilli
gitwithcorkorrubbere
ha
cesthe“sweetspot”effectWeaugme
toutmodelsoitca
provethatcorki
gisuselessAtlastthematerialwoodoralumi
umoutofwhichthebatisco
structedreallymatterthatourmodelca
predict
12ModelAssumptio
1Thereis
ofrictio
betwee
balla
dbatge
eratedbythecollisio
2Thetimeoftheballbatcollisio
varieslittlewhilethecollisio
poi
tischa
gi
g3Thebaseballbatisa
eve
lyproportio
edcyli
der4I
thearticlethevelocitywediscussisrelativevelocitya
dthusweca
co
siderthebattobestaticAssumptio
3a
d4giveuse
oughreaso
able
esstoco
sidertheproblemasaproblemofca
tilever
3
fTeam6336
Page4of13
2Mecha
icModelFortheBallBatCollisio
Ourmodelisdevelopedfora
alyzi
gthecollisio
betwee
thebaseballa
dbatBya
alyzi
gthee
ergytra
sformatio
betwee
theballa
dthebatwefi
dthe“sweetspot”ca
becomputedbye
ergya
alysisa
dthereaso
whythe“sweetspot”is
otatthefare
dofthebatca
beexplai
edbye
ergytra
sformatio
21ballbatcollisio
I
thispaperthebatismodeledasaca
tilever
Figure1Thefixedpositio
isthebatha
dleholdi
gbythebatterTheballhitthebatatthepositio
x0tra
sferri
gsomee
ergytothebatOurproblemiswhichpoi
talo
gthebatwillrebou
dtheballmostAccordi
gtotheprofou
dstudyi
thelast20yearsthephysicsmodelofthebati
cludescomplicatedfactorswhichisdifficulttoha
dleByusi
ge
ergyco
servatio
Lawa
da
alyzethee
ergytra
sformatio
processduri
gbatballcollisio
asimplemodelissetupi
thispapertoa
alyzethebatballcollisio
a
dfi
da
efficie
tmethodtocomputethepositio
of“sweetspot’
22E
ergyco
vertWhe
ahighspeedbaseballhitabatitski
etice
ergycha
gedi
tothreepartstherebou
di
gki
etice
ergydrivi
gtheballflyi
gawaythedeformatio
e
ergyoftheballa
de
ergytra
sformedtothebatThelasto
ei
cludesthevibratio
whichmakesthebatteru
comfortablea
dthedeformatio
e
ergydistortedthebatAccordi
gtothee
ergyco
servatio
theoryfollowi
ge
ergyide
tityishold
m2m2v1v2K122WhereKisthesumofthee
ergytra
sferredtothebatisthepote
tiale
ergyoftheballSi
cevariesverylittlewhilethecollisio
poi
tcha
geitca
beregarded
asthefu
ctio
ofv1a
di
depe
de
twiththestructureofthebatSo
4
fTeam6336
Page5of13
m2v2Kco
sta
t22Accordi
gtotheequality2tra
sfermaximumpowertother