全球旧事资料 分类
起见这儿暂且不谈)。(2)图上看出可以从非主要矛盾线上抽调人员支持主要矛盾线,这样一来可以提高效率,即使抽去的人员工种不同,一个人只顶半个人用,有时并不吃亏,但抽调后必须重新画图。当然流线图还有不少其他的好处,这儿就不一一列举了。我想在此也乘便提一下,主要矛盾线可以不止一条。一般讲来,安排的好的计划,往往出现有关零件同时完成,组成部件;有关部件同时完成,进行总体装配的情况。在这种情况下主要矛盾方面就不是用一条线表达了。愈是好的计划,红线愈多,多条红线还可以作为组织劳动竞赛的依据。当然,终点也可能不止一个。例如,化学分析可以陆续地分析出若干种元素,获得每一种元素都可以作为终点。在这种情况下,我们可以将起始点至每一个终点所需要的时间进行比较,把需要时间最长的线路,定为主要矛盾线。但另一方面,也可以根据产品的主次,定出主要矛盾线来。换言之,即将起始点到主要产品的终点需要时间最长的线路,定为主要矛盾线。
§3分细与合并
从图16看出任务(67)的完成需要23周,时间最长,这就启发我们考虑为了加
f
快进度,可否把任务(67)重新组织一下,其方法之一是要细致的画一⑥→⑦的工序流线图,标出主要矛盾线,研究缩短时间的可能性。例如,一个单向挖掘的隧道工程,我们采用两头开挖的方法,这样,一个任务变为两个任务,加快了进度(请读者设想一下,一个任务变成两个,箭头图怎样画)。
为了容易看得清楚或计算方便起见,有时我们在图上也把一些任务合并考虑,如将11合并为图12。
又如图16可以将②③合并、⑥⑦合并、⑩1○11○2合并得图17。
并得那么粗,分得那么细,虽客观需要与具体情况而定。具体负责的技术员、调度员为了便于掌握,应当把图画得更详尽些,更细致些,供领导和群众一般参考的可以画的粗些。密如蛛网,忘而却步的工序流线图,不但不易获得群众的支持,而且难使领导看出重点,作到心中有数。但不细致,又不能发现关键所在。因此,在主要矛盾线上,每一环节都值得分细研究。这样可以找出缩短工时的可能性。
§4零的运用在数学史上,零的出现是一件大事,在统筹方法中引进“虚”任务,用“0”时间,
f
也是应当注意的一个重要方法。例一:把一台机器拆开,拆开后分为两部分修理。称为甲修、乙修,最后再装在一
起。这样的图怎样画?共有四个任务:
在“拆”、“装”之间有两个任务:
0
“②→③”将同时代表两个任务了,不好办。我们建议用表示“虚”任务,这r
好听全球资料 返回顶部