全球旧事资料 分类
。”(雷科德的原文用古体英语,其中“Gemowe”的意思是“孪生”。注意,雷科德的等号比我们今天用的长得多。)所以,尽管数学家几千年来都心照不宣地知道1+1=2,但直到16世纪的某一天为止,这一等式或许并没有写成我们今天的形式。而且直到19世纪之前,数学
f家们都一直没有探究过我们相信这一等式的原因。在整个19世纪中,数学家开始认识到,他们的前辈过分经常地依赖于一些隐藏的假定,而这些假定并不总是可以很容易地证明为真的(而且有时候是错误的)。打破古代数学坚冰的第一道裂缝出现于19世纪初叶,即非欧几何的发现。我们将在本书后面的一章中更详细地讨论这一问题。如果连伟大的欧几里得做出的假定都并非无懈可击,那么数学中还有哪些部分能够令人安之若素呢?19世纪晚期,更具哲学倾向的数学家如利奥波德克罗内克、朱塞佩皮亚诺、大卫希尔伯特和伯特兰罗素等,开始非常认真仔细地检查数学的基础。他们在考虑:哪些东西是我们真正能够确信无疑地知道的。我们是否能够为数学找到一套基本假定,并可以证明它们是自洽的呢?德国数学家克罗内克认为,自然数1,2,3,……是上帝的恩赐。因此不言自明,像等式1+1=2这类算术定律是可靠的。但大部分逻辑学家反对他的观点,他们认为集合这一概念比整数更为基本。“1+1=2”这一陈述到底意味着什么?从根本上说,这意味着,当含有一个元素的集合与同样含有一个元素的集合合并时,所得到的并集总是含有两个元素。但要让这种说法说得通,我们就需要回答一连串新问题,例如集合的意义是什么、有关集合我们知道些什么、为什么我们会知道这些,等等。1910年,数学家阿尔弗雷德诺斯怀特海德与哲学家伯特兰罗素共同发表了一部题为《数学原理》
f的三卷本巨著。该书篇幅浩大、立论深奥,很可能是试图重铸算术,将之归为集合理论的一个分支。人们自然不会把这部书拿给一个八岁大的孩子看,以此向他解释1+1=2的缘由。在第一卷洋洋362页之后,怀特海德和罗素终于得到了一个命题,他们说:“当算术加法得到了定义,随之便可以得出1+1=2的结论。”注意,他们其实还没有解释什么是加法。直到第二卷,他们才有空考虑这一问题。定理“1+1=2”真正出现在第二卷的86页。他们以幽默的笔触在那里轻描淡写地写道:“上述命题偶尔会有用处。”本书不拟在此嘲笑怀特海德和罗素,因为在与集合论中出人意料的困难做斗争的人们中,他们属于两位先驱者。例如,罗素发现,对集合的r
好听全球资料 返回顶部