全球旧事资料 分类
恒谦教育研究院
利用柯西不等式求最值
【母题来源】2015年陕西卷文24选修45:不等式选讲【母题原题】已知关于x的不等式xab的解集为x2x4I求实数ab的值;II求at12bt的最大值【答案】Ia3b1;II4【考点定位】1不等式与方程;2柯西不等式
【试题解析】I由xab,得baxba则II方法一(柯西不等式法):
ba2,解得a3b1ba4
3t12t34tt32124t2t2
24tt4
当且仅当
4tt即t1时等号成立,13
3t12t



max
4
【命题意图】本题考查不等式与方程的关系,涉及柯西不等式求最值,属于基础题【方法、技巧、规律】1柯西不等式揭示了任意两组实数之积的平方与平方和之积间的关系,应用它可以证明很多复杂的不等式;2用柯西不等式证明或求值事要注意两点:一是所给不等式的形式是否和柯西不等式的形式一致,若不一致,需要将所给式子变形;二是注意等号成立的条件【探源、变式、扩展】有些证明不等式题表面上看与柯西不等式无关,然而通过对原不等式作适当变形改造后却可以应用柯西不等式加以解决,当然具体如何变形改造是关键,也是难点,这往往需要经过观察、猜测、推理等【变式】【2015江苏学易大联考】求函数:y3x141x最大值.
西安恒谦教育科技股份有限公司第1页
f恒谦教育研究院
【答案】52
【命题意图】本题考查柯西不等式等知识,意在考查运算求解能力
1【2013湖南理】已知abca2b3c6则a24b29c2的最小值为【答案】12
2且当a2b1c时,取最小值3
考点:柯西不等式2【2015成都月考】对于c0,当非零实数ab满足4a22ab4b2c0,且使2ab最大时,的最小值为.西安恒谦教育科技股份有限公司第2页
3a
45bc
f恒谦教育研究院
【答案】2
考点:不等式的解法及其应用3【河南省中原名校2015届高三上学期第一次摸底考试,理24】己知长方体的三条棱长分别为a、b、c,其外接球的半径为
32

I求长方体体积的最大值:II设m136
abc,求m
的最大值


西安恒谦教育科技股份有限公司第3页
f恒谦教育研究院
考点:1、基本不等式;2、柯西不等式4【福建省安溪一中、德化一中2015届高三9月摸底考试,理21(3)】(本小题满分7分)选修4-5:不等式选讲(Ⅰr
好听全球资料 返回顶部