第七章平行线的证明
4.平行线的性质
一、学生知识状况分析
学生技能基础:在学习本课之前,学生对平行线的性质已经比较熟悉,也有了初步的逻辑推理能力,特别是上一节课的学习,使学生对简单的证明步骤有了更为清楚的认识,这为今天的学习奠定了一个良好的基础.活动经验基础:在以往的几何学习中,学生对动手操作、猜想、说理、讨论等活动形式比较熟悉,本节课主要采取学生分组交流、讨论等学习方式,学生已经具备必要的基础.
二、教学任务分析
在以前的几何学习中,主要是针对几何概念、运算以及几何的初步证明(说理),在学生的头脑中还没有形成一个比较系统的几何证明体系,上一节课安排的《为什么它们平行》和本节课安排的《如果两条直线平行》旨在让学生从简单的几何证明(平行线的判定与性质)入手,逐步形成一个更为清晰的证明思路,为此,本课时的教学目标是:1认识平行线的三条性质。2能熟练运用这三条性质证明几何题。3进一步理解和总结证明的步骤、格式、方法.4了解两定理在条件和结构上的区别,体会正逆的思维过程.5进一步发展学生的合情推理能力,培养学生的逻辑思维能力。
三、教学过程分析
本节课的设计分为四个环节:情境引入探索与应用反馈练习
f反思与小结
第一环节:情境引入活动内容:一条公路两次拐弯后,和原来的方向相同,第一次拐的角∠B是130°,第二次拐的角∠C是多少度?说明:这是一个实际问题,要求出∠C的度数,需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.活动目的:通过对一个实际问题的解决,引出平行线的性质。教学效果:由于学生对平行线的性质比较熟悉,因此,在学生回忆起这些知识后,能很快解决实际问题。
第二环节:探索与应用活动内容:①画出直线AB的平行线CD,结合画图过程思考画出的平行线,被第三条直线所截的同位角的关系是怎样的?②平行公理:两直线平行同位角相等.③两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?∵a∥b已知,∴∠1=∠2两条直线平行,同位角相等∵∠1=∠3对顶角相等,∴∠2∠3等量代换.师:由此我们又得到了平行线有怎样的性质呢?
f学生活动:同学们积极举手回答问题.教师根据学生叙述,给出板书:两条平行线被第三条直线所截,内错角相等.师:下面请同学们自己推导同旁内角是互补的.并归纳总结出平行线的r