上,为减少运算量,引入了塔形处理的思想,提出了分层比较法。利用图像的塔形分解,可以分析图像中不同大小的物体。同时,通过对低分辨率、尺寸较小的上层进行分析所得到的信息还可以用来指导对高分辨率、尺寸较大的下层进行分析,从而大大简化分析和计算。在搜索过程中,首先进行粗略匹配,每次水平或垂直移动一个步长,计算对应像素点灰度差的平方和,记录最小值的网格位置。其次,以此位置为中心进行精确匹配。每次步长减半,搜索当前最小值,循环这个过程,直到步长为零,最后确定出最佳匹配位置。算法的具体实现步骤如下(1)将待匹配的两幅图像中22也就是将低一级的图像42邻域内的像素点的像素值分别取平均,作为这一区域4
2像素值,得到分辨率低一级的图像。然后,将此分辨率低一级的图像再作同样的处理,4邻域内的像素点的像素值分别取平均,作为这一区域4
点的像素值,得到分辨率更低一级的图像。依次处理,得到一组分辨率依次降低的图像。2从待匹配的两幅图像中分辨率最低的开始进行匹配搜索,由于这两幅图像像素点的数目少,图像信息也被消除一部分,因此,此匹配位置是不精确的。所以,在分辨率更高一级的图像中搜索时,应该在上一次匹配位置的附近进行搜索。依次进行下去,直到在原始图像中寻找到精确的匹配位置。算法的优点1该算法思路简单,容易理解,易于编程实现。
f2该算法的搜索空间比逐一比较要少,在运算速度较逐一比较法有所提高。算法的缺点1算法的精度不高。在是在粗略匹配过程中,移动的步长较大,很有可能将第一幅图像上所取的网格划分开,这样将造成匹配中无法取出与第一幅图像网格完全匹配的最佳网格,很难达到精确匹配。2对图像的旋转变形仍然不能很好的处理。与逐一比较法一样,该算法只是对其运算速度有所改进,让搜索空间变小,并无本质变化,因此对图像的旋转变形并不能进行相应处理。323相位相关法相位相关度法是基于频域的配准常用算法。它将图像由空域变换到频域以后再进行配准。该算法利用了互功率谱中的相位信息进行图像配准,对图像间的亮度变化不敏感,具有一定的抗干扰能力,而且所获得的相关峰尖锐突出,位移检测范围大,具有较高的匹配精度。相位相关度法思想是利用傅立叶变换的位移性质,对于两幅数字图像st,其对应的傅立叶变换为ST,即
SFs
e
TFt
e
36
若图像st相差一个平移量xy,即有sxytxxyy37
根据傅立叶变换的位移性质,上式的傅立叶r