全球旧事资料 分类
时间序列预测法在处理具有非线性关系、非正态分布特性的宏观网络态势值所形成的时间序列数据时,效果并不是不理想。支持向量机有效避免了上述算法所面临的问题,预测绝对误差小,保证了预测的正确趋势率,能准确预测网络态势的发展趋势。支持向量机是目前网络安全态势预测的研究热点。
5结语本文基于网络安全态势感知的概念模型,详细阐述了态势感知中三个主要的研究内容:安全态势要素提取、态势理解和态势预测,重点讨论各研究点需解决的核心问题、主要算法以及各种算法的优缺点。目前对于网络安全态势感知的研究还处于初步阶段,许多问题有待进一步解决,本文认为未来的研究方向有以下几个方面。1网络安全态势的形式化描述。网络安全态势的描述是态势感知的基础。网络是个庞大的非线性的复杂系统,复杂系统描述本身就是难点。在未来的研究中,需要具体分析安全态势要素及其关联性,借鉴已有的成熟的系统表示方法,对网络安全态势建立形式化的描述。其中源于哲学概念的本体论方法是重要的研究方向。本体论强调领域中的本质概念,同时强调这些本质概念之间的关联,能够将领域中的各种概念及概念之间
f的关系显式化,形式化地表达出来,从而表达出概念中包含的语义,增强对复杂系统的表示能力。但其理论体系庞大,使用复杂,将其应用于网络安全态势的形式化描述需要进一步深入的研究。
2准确而高效的融合算法研究。基于网络攻击行为分布性的特点,而且不同的网络节点采用不同的安全设备,使得采用单一的数据融合方法监控整个网络的安全态势存在很大的难度。应该结合网络态势感知多源数据融合的特点,对具体问题具体分析,有针对性地对目前已经存在的各种数据融合方法进行改进和优化。在保证准确性的前提下,提高算法的性能,尽量降低额外的网络负载,提高系统的容错能力。另一方面可以结合各种算法的利弊综合利用,提高态势评估的准确率。3预测算法的研究。网络攻击的随机性和不确定性决定了安全态势的变化是一个复杂的非线性过程。利用简单的统计数据预测非线性过程随时间变化的趋势存在很大的误差。如时间序列分析法,根据系统对象随时间变化的历史信息对网络的发展趋势进行定量预测已不能满足网络安全态势预测的需求。未来的研究应建立在基于因果关系的分析之上。通过分析网络系统中各因素之间存在的某种前因后果关系,找出影响某种结果的几个因素,然后利用个因素的变化预测整个网络安全态势的变化。基于因果关系的数学模r
好听全球资料 返回顶部