全球旧事资料 分类
深度学习。AlphaGo借助两个深度卷积神经网络(价值网络和策略网络)自主地进行新知识的学习。深度卷积神经网络使用很多层的神经元,将其堆叠在一起,用于生成图片逐渐抽象的、局部的表征。对图像分析得越细,利用的神经网络层就越多。AlphaGo也采取了类似的架构,将围棋模盘上的盘面视为19×19的图片输入,然后通过卷积层来表征盘面。这样,两个深度卷积神经网络中的价值网络用于评估盘面,策略网络则用于采样动作。
在深度学习的第一阶段策略网络的有监督学习(即从中I中学习)阶段,拥有13层神经网络的AlphaGo借助围棋数据库KGS中存储的3000万份对弈棋谱进行初步学习。
【新西南教育】选择【新西南】,赢的金饭碗
f【新西南教育】选择【新西南】,赢的金饭碗这3000万份棋谱样本可以用a、b进行统计。a是一个二维棋局,把a输入到一个卷积神经网络进行分类,分类的目标就是落子向量A。通过不断的训练,尽可能让计算机得到的向量A接近人类高手的落子结果b,这样就形成了一个模拟人类下围棋的神经网络,然后得出一个下棋函数F_go()。当盘面走到任何一种情形的时候,AlphaGo都可以通过调用函数F_go()计算的结果来得到最佳的落子结果b可能的概率分布,并依据这个概率来挑选下一步的动作。在第二阶段策略网络的强化学习(即从Ⅱ中学习)阶段,AlphaGo开始结合蒙特卡罗树搜索,不再机械地调用函数库,而类似于一种人类进化的过程:AlphaGo会和自己的老版本对弈。即,先使用F_go(1)和F_go(1)对弈,得到了一定量的新棋谱,将这些新棋谱加入到训练集当中,训练出新的F_go(2),再使用F_go(2)和F_go(1)对弈,以此类推,这样就可以得到胜率更高的F_go(
)。这样,AlphaGo就可以不断改善它在第一阶段学到的知识。在第三阶段价值网络的强化学习阶段,AlphaGo可以根据之前获得的学习经验得出估值函数v(s),用于预测策略网络自我对抗时棋盘盘面s的结果。最后,则是将F_go()、v(s)以及蒙特卡罗树搜索三者相互配合,使用F_go()作为初始分开局,每局选择分数最高的方案落子,同时调用v(s)在比赛中做出正确的判断。
这就是AlphaGo给围棋带来的新搜索算法。它创新性地将蒙特卡罗模拟和价值网络、策略网络结合起来训练深度神经网络。这样价值网络和策略网络相当于AlphaGo的两个大脑,策略网络负责在当前局面下判断“最好的”下一步,可以理解为落子选择器;价值网络负责评估整体盘面的优劣,淘汰掉不值得深入计算的走法,协助前者提r
好听全球资料 返回顶部