则由经过基因(ge
e)编码的一定数目的个体i
dividual组成。每个个体实际上是染色体chromosome带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(ge
eratio
)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fit
ess)大小选择(selectio
)个体,并借助于自然遗传学的遗传算子(ge
eticoperators)进行组合交叉(crossover)和变异(mutatio
),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decodi
g),可以作为问题近似最优解。[1]GA是一种基于自然群体遗传演化机制的高效探索算法,它是美国学者Holla
d于1975年首先提出来的。它摒弃了传统的搜索方式,模拟自然界生物进化过程,采用人工进化
4
f苏州大学本科生毕业设计(论文)
的方式对目标空间进行随机化搜索。它将问题域中的可能解看作是群体的一个个体或染色体,并将每一个体编码成符号串形式,模拟达尔文的遗传选择和自然淘汰的生物进化过程,对群体反复进行基于遗传学的操作(遗传,交叉和变异),根据预定的目标适应度函数对每个个体进行评价,依据适者生存,优胜劣汰的进化规则,不断得到更优的群体,同时以全局并行搜索方式来搜索优化群体中的最优个体,求得满足要求的最优解。Holla
d创建的遗传算法是一种概率搜索算法,它是利用某种编码技术作用于称为染色体的数串,其基本思想是模拟由这些组成的进化过程。跗算法通过有组织地然而是随机地信息交换重新组合那些适应性好的串,在每一代中,利用上一代串结构中适应好的位和段来生成一个新的串的群体;作为额外增添,偶尔也要在串结构中尝试用新的位和段来替代原来的部分。遗传算法是一类随机化算法,但是它不是简单的随机走动,它可以有效地利用已经有的信息处理来搜索那些有希望改善解质量的串,类似于自然进化,遗传算法通过作用于染色体上的基因,寻找好的染色体来求解问题。与自然界相似,遗传算法对待求解问题本身一无所知,它所需要的仅是对算法所产生的每个染色体进行评价,并基于适应r