件蠕变曲线,同应力同状态下胶合板与SPF初始变形量相差较较小,主要取决于应力与相对湿度。在低应力环境下,胶合板的蠕变破坏较早,约为SPF的14,高应力环境下两者相差不大。主要是由于胶合板的钻孔深度较SPF浅,受环境影响明显缘故所致。
Burgers44Burgers模型应用分析
Burgers本构方程YtP1P21expP3tP4t1
30
f南京林业大学本科生论文
式中:Yt为随时变化蠕变变形的数学函数,P为待定系数,t为蠕变时间。P1、P4反映弹性变形和粘性变形,P2、P3反映粘弹性变形。
图427SPF1Burgers模型拟合曲线
31
f南京林业大学本科生论文
图428SPF3Burgers模型拟合曲线
图429J4Burgers模型拟合曲线
32
f南京林业大学本科生论文
图430J1Burgers模型拟合曲线利用Burger蠕变模型公式(1)作为回归方程表达式,分别进行了两种环境状态下各结合层蠕变特性曲线的数值拟合,方程各参数P1、P2、P3、P4值分别见图3。由图可知,Burger模型描述钉结合持久蠕变数据比较精确,其相关系数都在98以上,表明钉结合持久蠕变行为可用Burger模型来模拟。模型参数P1反映在弹性范围内,拉应力作用下结合层的抗变形能力,拉应力水平与P1比值几乎一致,结合层弹性性能与应力水平关系较小,在卸载后可完全恢复。P2及P3反映结合层粘弹性变形,图中拟合数据可看出,P2及P3与应力水平及环境状态密切相关,应力水平越大或高湿环境下,其恢复原有尺寸的能力越来越小。P4反映结合层蠕变中的粘性变形,应力水平越大或高湿环境下,永久变形越大。
33
f南京林业大学本科生论文
5结论
本课题采用试验测试和软件拟合对木构件钉合持久蠕变特性进行了研究,结论如下:1)钉结合持久蠕变变形都在相对长的时间都存在,受应力大小和温湿度影响。钉结合层短期蠕变过程可分为三个阶段:第一阶段,蠕变速率随时间而呈下降趋势。第二阶段:蠕变速率不变,第三阶段:蠕变速率随时间而上升,随后试验结束。2)高温高湿环境下蠕变变形量要显著大于低湿环境,高应力条件下蠕变变形量大于低应力条件下,应力及相对湿度是影响蠕变的重要因素。3)在相同应力及相同温湿度环境下,SPF蠕变变形量小于胶合板。4)Burgers四元件模型可以用来模拟木构件与钉结合在不同环境、不同应力条件下的蠕变特性,其精度可以满足工程需要。5)蠕变变形随应力水平的增大而增大。各应力水平蠕变曲线都表现出了同样蠕变规律,但部分试件蠕变测试时间不能充分反映材料的蠕变性能,今后还要长期时间对材料的蠕变性能做进一步的研究。
34
f南r