全球旧事资料 分类
二次函数应用题分类解析二次函数应用题从题设给定形式和解法上看,常见的有以下三类:一、待定系数法型
题设明确给出两个变量间是二次函数关系,和几对变量值,要求求出函数关系式,并进行简单的应用。解答的关键是熟练运用待定系数法,准确求出函数关系式。
例1.某公司生产的A种产品,它的成本是2元,售价是3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告。根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:
x(十万01元)
2…
y
11518…
(1)求y与x的函数关系式;(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元)的函数关系式;(3)如果投入的年广告费为1030万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?
f二、分析数量关系型
题设结合实际情景给出了一定数与量的关系,要求在分析的基础上直接写出函数关系式,并进行应用。解答的关键是认真分析题意,正确写出数量关系式。
例2.某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元。物价部门规定其销售单价不得高于每千克70元,也不得低于30元。市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克。在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算)。设销售单价为x元,日均获利为y元。
(1)求y关于x的二次函数关系式,并注明x的取值范围;
(2)将(1)中所求出的二次函数配方

y

ax

b22a

4ac4a
b2
的形式,写出顶点坐标;在图
2
所示的坐标
系中画出草图;观察图象,指出单价定为多少元时日均获得最多,
是多少?
(3)若将这种化工原料全部售出,比较日均获利最多和销售单价最高这两种销售方式,哪一种获总利较多,多多少?
f三、建模型即要求自主构造二次函数,利用二次函数的图象、性质等解
决实际问题。这类问题建模要求高,有一定难度。例3.如图4,有一块铁皮,拱形边缘呈抛物线状,MN4dm,抛物线顶点处到边MN的距离是4dm,要在铁皮上截下一矩形ABCD,使矩形顶点B、C落在边MN上,A、D落在抛物线上,问这样截下去的矩形铁皮的周长能否等于8dm?
例4某环保器材公司销售一种市场需求较大的新型产品已知每件产品的进价为40元经销过程中测出销售量y万件与销售单价x元存在如图所示的r
好听全球资料 返回顶部