全球旧事资料 分类
定律和热力学第二定律被广泛应用于各种化学体系,特别是溶液体系的研究。吉布斯对多相平衡体系的研究和范托夫对化学平衡的研究,阿伦尼乌斯提出电离学说,能斯脱发现热定理都是对化学热力学的重要贡献。当1906年路易斯提出处理非理想体系的逸度和活度概念,以及它们的测定方法之后,化学热力学的全部基础已经具备。劳厄和布喇格对X射线晶体结构分析的创造性研究,为经典的晶体学向近代结晶化学的发展奠定了基础。阿伦尼乌斯关于化学反应活化能的概念,以及博登施坦和能斯脱关于链反应的概念,对后来化学动力学的发展也都作出了重要贡献。20世纪20~40年代是结构化学领先发展的时期,这时的物理化学研究已深入到微观的原子和分子世界,改变了对分子内部结构的复杂性茫然无知的状况。1926年,量子力学研究的兴起,不但在物理学中掀起了高潮,对物理化学研究也给以很大的冲击。尤其是在1927年,海特勒和伦敦对氢分子问题的量子力学处理,为1916年路易斯提出的共享电子对的共价键概念提供了理论基础。1931年鲍林和斯莱特把这种处理方法推广到其他双原子分子和多原子分子,形成了化学键的价键方法。1932年,马利肯和洪德在处理氢分子的问题时根据不同的物理模型,采用不同的试探波函数,从而发展了分子轨道方法。价键法和分子轨道法已成为近代化学键理论的基础。鲍林等提出的轨道杂化法以及氢键和电负性等概念对结构化学的发展也起了重要作用。在这个时期,物理化学的其他分支也都或多或少地带有微观的色彩,例如由欣谢尔伍德和谢苗诺夫两个学派所发展的自由基链式反应动力学,德拜和休克尔的强电解质离子的互吸理论,以及电化学中电极过程研究的进展氢超电压理论。第二次世界大战后到60年代期间,物理化学以实验研究手段和测量技术,特别是各种谱学技术的飞跃发展和由此而产生的丰硕成果为其特点。
第4页共15页
f化工系无机非(2)班
电子学、高真空和计算机技术的突飞猛进,不但使物理化学的传统实验方法和测量技术的准确度、精密度和时间分辨率有很大提高,而且还出现了许多新的谱学技术。光谱学和其他谱学的时间分辨率和自控、记录手段的不断提高,使物理化学的研究对象超出了基态稳定分子而开始进入各种激发态的研究领域。光化学首先获得了长足的进步,因为光谱的研究弄清楚了光化学初步过程的实质,促进了对各种化学反应机理的研究。这些快速灵敏的检测手段能够发现反应过程中出现的暂态中间产物,使反应机理不再只r
好听全球资料 返回顶部