、大小等;图像参数特征是经过计算后得到的用于描述图像特征的各种参数,如图像灰度的均值、方差,图像的比值,图像的协方差、各阶矩,图像在变换域中的频谱等;图像光谱特征由各个波段的光谱值决定,包括平均光谱值大小、光谱曲线的变化趋势和光谱曲线中对地物信息具有标示性意义的一些几何参数,如波峰、波谷、斜率等。在对遥感图像理解中,主要针对这些信息确定图像目标类型、属性等信息。二、对遥感图像的理解第四章对遥感图像的理解是重点内容。针对地学应用的遥感图像中的目标是各种地理客体,因而这里的遥感图像理解也就是遥感图像的地学理解。地学遥感图像理解则除了包括目标的几何关系、目标类别外,更重要的是理解目标的性质、性状、数量特征等。其内涵主要有:目标类别、地物空间关系、目标的性状(物理、化学、生物参数)、目标的数量特征。遥感图像理解包括图像处理、图像分析和图像理解三个层次的内容。图像处理包括图像纠正(也叫数据预处理)和图像增强,纠正图像的几何误差和辐射误差,并突出所感兴趣的信息。图像分析包括边缘检测、图像分类、空间分析,提取感兴趣的目标和信息,对图形空间信息进行综合分析。课程主讲的图像理解侧重于计算机解译,从图像特征或光谱特征出发,有很多不同的方法。从图像特征出发,图像特征理解步骤为图像预处理、目标检测、目标解释,主要是以图像中的目标为理解单元,一般多用于高分辨率遥感图像中。从光谱特征出发,侧重光谱特征的理解包括数据预处理、波段选择、图像分类三步,一般用于低分辨率遥感图像中。对遥感数据具体采用什么理解方法视具体情况而定,理想的方式是将图像特征与光谱特征结合进行。三、侧重图像特征的图像理解图像特征包括图像色调、颜色、阴影、形状、纹理、大小、位置、图型、相关布局、参数特征等。基于图像目标检测的策略,用图像区域表达图像中的目标,其中点目标和线目标是区域的特例。因此图像目标可以用对应图像区域的边界(线)或区域(面)来表示,于是检测目标就可以从检测边界和检测区域两个途径进行。从图像目标边缘出发,有各种边缘检测算子用于对图像目标进行检测识别。针对不同的处理要求选用不同的边缘检测算子,一般有梯度算子、拉普拉斯算子、马尔算子等。边缘检测之后还要进行边缘连接,使目标的边界成为一个整体,不零散断续。基于图像目标区域的检测方法,是在某种或几种属性下考察每个像素的取值,若与某些其它像素的取值相r