全球旧事资料 分类
2014年中考数学二轮复习精品资料
动点型问题
一、中考专题诠释所谓“动点型问题”是指题设图形中存在一个或多个动点它们在线段、射线或弧线上运动的一类开放性题目解决这类问题的关键是动中求静灵活运用有关数学知识解决问题“动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。二、解题策略和解法精讲解决动点问题的关键是“动中求静”从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路这也是动态几何数学问题中最核心的数学本质。三、中考考点精讲考点一:建立动点问题的函数解析式(或函数图像)函数揭示了运动变化过程中量与量之间的变化规律是初中数学的重要内容动点问题反映的是一种函数思想由于某一个点或某图形的有条件地运动变化引起未知量与已知量间的一种变化关系这种变化关系就是动点问题中的函数关系例1(2013兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()
A.
B.
C.
D.
思路分析:分析动点P的运动过程,采用定量分析手段,求出S与t的函数关系式,根据关
1
f系式可以得出结论.解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则:(1)当点P在A→B段运动时,PB1-t,Sπ(1-t)2(0≤t<1);(2)当点P在B→A段运动时,PBt-1,Sπ(t-1)2(1≤t≤2).综上,整个运动过程中,S与t的函数关系式为:Sπ(t-1)2(0≤t≤2),这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求.故选B.
点评:本题结合动点问题考查了二次函数的图象.解题过程中求出了函数关系式,这是定量
的分析方法,适用于本题,如果仅仅用定性分析方法则难以作出正确选择.
对应训练1.(2013白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是r
好听全球资料 返回顶部