算能力、逻辑思维能力;3.在教学中渗透事物总是相互联系又相互区别的辩证唯物主义观点.教学重难点:教学重点:掌握用“一组对边平行且相等的四边形是平行四边形”这一判定定理来判定一个四边形是平行四边形.教学难点:判定定理的证明方法及运用.教学过程:一.复习引入:我们已学过哪些方法来判定一个四边形的平行四边形?(提问回答)二.新课讲解设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢?活动:课本探究内容,并用事准备好的纸条(纸条的长度相等),先将纸条放置不平行位置,让学生设想若二纸条的端点为四边形的顶点,则组成的四边形是不是平行四边形?若将纸条
f摆放为平行的位置,则同样用二纸条的端点为顶点组成的四边形是不是平行四边形?设问:我们能否用推理的方法证明这个命题是正确的呢?(让学生找出题设、结论,然后写出已知、求证及证明过程.)小结:平行四边形判定方法三:前提:若一个四边形有一组对边平行且相等.结论:这个四边形是一个平行四边形.
如图用几何语言表达为:∵ABCD且AB∥CD∴四边形ABCD是平行四边形平行且相等可用符号“”,读作“平行且相等”.∵ABCD,∴四边形ABCD是平行四边形.三.例题讲解:例:已知:E、F分别为平行四边形ABCD两边.AD、BC的中点,连结BE、DF.求证:.
分析:今天我们证明角相等,除了平行线,全等三角形外,又多了一个新方法,可以证明平行四边形对角相等,即只要四边形EBFD是平行四边形.由已知平行四边形ABCD的性质可得DEBF,又AD=BC,E、F为中点则有DE=BF,根据“一组对边平行且相等的四边形是平行四边形”的判定定理,可得四边形EBFD是平行四边形.今天我们主要研究了利用边的关系来判定平行四边形,注意满足两个条件.
注意:若一组对边平行,另一组对边相等,是不可以判定为平行四边形的,它是梯形.第3课时教学目的1.掌握用“对角线互相平分的四边形是平行四边形”这一判定定理,会用这些定理进行有关的论证和计算;2.理解“两组对角分别相等的四边形是平行四边形”这一判定定理,会用这些定理进行有关的论证和计算;3.培养学生的观察能力、动手能力自学能力、计算能力、逻辑思维能力.教学重难点教学重点:理解掌握“对角线互相平分的四边形是平行四边形,两组对角分别相等的四边形是平行四边形”这一判定定理.
f教学难点:判定定理的证明方法及运用.教学过程:一.复习导入1.用定义法证明一个四r