丁基橡胶纳米复合材料
异丁烯基聚合物,聚异丁烯的均聚物,丁基橡胶(异丁烯、异戊二烯共聚物),卤化丁基橡胶橡胶(溴化或氯化丁基橡胶系列)和Exxpro(溴化异丁烯副甲基苯乙烯共聚物)的重要特征,是共同具有的低渗透性,并有着低的玻璃化转变温度Tg。对于大多数聚合物的Tg(需要有良好的空间或使用温度以满足弹性体的性能)与链迁移率高度相关,同时这也导致材料的高渗透性。可以在图1中看到Tg的逆反相关以及渗透性在许多类型的聚合物中的存在。聚异丁烯同时具有低渗透值和Tg值。比PIB透气性低的非晶聚合物,比如聚碳酸酯非晶聚合物,但Tg值高得多,弹性较差。许多结晶聚合物也具有比PIB更低的渗透率(如聚乙烯,尼龙),但却会结晶,这导致他们无法具有弹性体的特性。
1、渗透性对比非晶聚合物的Tg:PDMS、BR、NR、CR、App、PVAc、PC和PIB
聚异丁烯不寻常的性能组合可以根据分子的结构来直观地理解。每一个聚异丁烯主链上其它碳的胺基二甲基类造成了链键角的改变,这使得他们比其它饱和烃能更加紧密地抱在一起。这通过聚异丁烯的高密度得以证明,在25℃的时候,为091gcc,其他烯烃聚合物则低于086gcc。在图2中,清楚显示了一个短(heptameric)聚异丁烯序列结构的典型例子,我们很容易想象这些链可以多么好地组合在一起。犹他州立大学的RichardBoyd教授于1994年通过一连串的模拟试验更直接地表现了出来,他比较了聚异丁烯与一个“非晶”聚乙烯材料的渗透性。
图2、PIB的典型分子结构
这种不同寻常的特性也存在于一系列异丁烯共聚物中,因为共聚物单体使用水平较低。这使得这些聚合物(图3)在轮胎应用中非常好用,包括用于内胎和硫化胶囊的丁基橡胶,气密层上的丁基合成橡胶,以及目前用于空气密封的Exxpro溴丁基(异丁烯共甲基段苯乙烯)。轮胎中越来越多地使用这种合成橡胶
f使得轮胎气密性增加,从而提高安全性,以及更好的燃油经济性,这些都源于优秀的内胎。这些好处现在常在各种车辆的轮胎上得以发现。
图3、异丁烯聚合物分子结构
为了进一步提高轮胎的性能,需要新技术和材料才能降低渗透性,甚至比聚异丁烯及其共聚物的渗透性还要低。虽然世界各地的实验室研究出了多种可能性,但最有前途的其中一种研究可能应该是纳米复合材料。集中探讨它们在弹性体中的使用,然后聚异丁烯基纳米复合材料在实验室所取得的进展也会加以阐述。
纳米复合材料的基本原理
建立有机无机复合材料性能良好平衡的关键因素是能否实现良好的分散程度。在r