32直棱柱的表面展开图
桐乡市现代实验学校谢荣教学目标教学目标1、了解直棱柱的表面展开图的概念。2、会在简单情况下判断一个平面图形是不是直棱柱的表面展开图,培养学生的空间想象能力。3、会画简单直棱柱的表面展开图。4、能根据展开图判断和制作立体模型。重点和难点重点和难点本节教学的重点是直棱柱的表面展开图,包括认和画展开图。立方体的表面展开图的辨认是本节教学的难点教学过程教学过程(一)创设情境设悬导课1.想挑战世纪谜题吗?【杜登尼Dude
ey18571930年是19世纪英国知名的谜题创作者.“蜘蛛和苍蝇”问题最早出现在1903年的英国报纸上,它是杜登尼最有名的谜题之一.它对全世界难题爱好者的挑战,长达四分之三个世纪.】在一个长方形长、宽、高分别为3米,2米,2米长A方体房间内,一蜘蛛在一面的中间,离天花板01米处A点,苍蝇在对面墙的中间离地面01米处B点B试问蜘蛛去捉苍蝇需要爬行的最短距离是多少
【设置悬念并引导学生把三维问题转化为二维来解决】二合作学习探索展图1演示课件形成概念将立方体沿某些棱剪开后铺平且六个面连在一起,这样的图形叫立方体的表面展开图2小组合作探索展图把你们小组所做的立方体纸盒沿着某些棱剪开,且使六个面连在一起然后铺平把你所得到的图形画出来数一数剪了几刀并比一比有何异同3展示风采归纳规律A展开图规律之一立方体的展开过程需要剪七刀B展开图规律之二异层“日”字连整体没有“田”C展开图规律之三对面不相连D展开图规律之四立方体表面展开图的周长是小正方形边长的14倍4展示了立方体展开图的全部可能情况
一四一型
一三二型
f三个二型
二个三型
5总结归纳形成五绝平面“七刀”现对面“不相连”“日”字异层见整体没有“田”(三)例题解析,学会识图(四)合作学习,学以致用:(五)挑战谜题,揭示本质:1.梯度变式,步步为营:(1)热身探索一:如图,有一边长4米立方体形的房间,一只蜘蛛在A处,一只苍蝇在B处。⑴试问,蜘蛛去抓苍蝇需要爬行的最短路程是多少?⑵若苍蝇在C处,则最短路程是多少?
CBA
(2)热身探索二:C如图,有一长方体形的房间,地面为边长4米的正方形,房间高3米。一只蜘蛛在A处,一只苍蝇在C处。试问,蜘蛛去抓苍蝇需要爬行的最短路程是多少?A(3)挑战谜题:“蜘蛛和苍蝇”问题在一个长方形长、宽、高分别为3米,2米,2米长方体房间内,一蜘蛛在r