全球旧事资料 分类
它的对角线。。。。。(引导学生回答)”
第二任务:注意引导学生数学表达的准确性。此处尽量引导学生自我完成,哪怕让学生在多次失败中不断的自我
完善,也比老师给出结论要好,至少锻炼学生的自我修正、完善能力。
第三任务:此时学生已经有了前面的探索经验,其实从方法上来说,已经无障碍,只是可能学生没有关注到这个
角度。
此时我们可以引导学生通过操作(折纸)得到对角线然后再研究,或者我们可以从另一个角度给学生适当的提示
“正方形也是菱形,菱形还研究过。。。。。。(期待学生思考)“第四环节:性质应用活动内容:①引用课本例1:如图118,在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CECFBE
与DF之间又怎样的关系?请说明理由。
②选用课本议一议进行阶段小结“平行四边形、菱形、矩形、正方形之间有什么关系?你能用一个图直观地表示
它们之间的关系吗?与同伴交流”
3
f活动目的:①使学生对通过自己的实践总结得到的关于正方形的性质能够熟练运用、解决具体问题。实际上就是充分锻炼学生理论依据(本节课是关于正方形的定理)图形化的能力,也锻炼了学生文本信息图形化的能力。充分锻炼学生的空间观念。②使学生养成阶段性回顾总结的习惯,使其逐渐养成良好的学习品质。同时又是对知识结构的再建过程,是学生丰富、重建自身认知结构的必要手段。活动的注意事项:①在引用本例题时由于问题中“BE与DF之间又怎样的关系?”这个表述过于笼统,所以可能有部分学生可能会对“关系”的理解不到位,只理解为数量或位置关系,所以在具体上课时要根据具体的学情,进行适当的分解。比如分层教学,可将问题分解为“BE与DF之间又怎样的数量关系?”“BE与DF之间又怎样的位置关系?”“BE与DF之间又怎样的数量、位置关系?”“BE与DF之间又怎样的关系?”分别由不同层次的学生选择适合自己的问题。最后一定要让学生明确“BE与DF之间又怎样的关系”包含数量和位置两种关系。或者我们可以在课堂上故意让“位置”“数量”两种不同观点的同学交流自己的意见,从而引发同学的关注与参与,进而在交争论中达成共识,加深印象。②实际上“平行四边形、菱形、矩形、正方形之间有什么关系?你能用一个图直观地表示它们之间的关系吗?与同伴交流”中“你能用一个图直观地表示它们之间的关系吗?”的这个表述在一定程度上是对学生回答问题方式的一种约束,不利于学生充分调动自己的认知结构对此问题做出“丰富多彩”的r
好听全球资料 返回顶部