2求limta
xx03x
解:limta
x1limta
x111
x03x3x0x
3
3
13求limta
3xx0x
解:limta
3xlimta
3x3133
x0x
x03x
类型2:因式分解并利用重要极限limsi
xa1,limxa1化简计算。
xaxa
xasi
xa
x21
21求lim
.
x1si
x1
解:lim
x21lim
x1x11112
x1si
x1x1si
x1
3
fsi
x1
22limx1
x21
解:limsi
x1limsi
x11111
x1x21x1x1x1
112
x24x3
x24x3
x3x1
23lim
解:lim
lim
limx12
x3si
x3
x3si
x3x3si
x3x3
类型3:因式分解并消去零因子,再计算极限
31
x26x8
lim
x4
x2
5x
4
解:
x26x8x4x2
lim
x4
x2
5x
4
limx4
x
4x
1
limx2x4x1
23
x2x6
32
lim
x3
x2
x
12
lim
x3
x2x6x2x12
lim
x3
xx
33
xx
24
lim
x3
xx
24
57
x23x2
33limx2
x24
解limx23x2limx2x1limx11
x2x24
x2x2x2x2x24
其他:
lim
1x2
1lim
1x22
0,
x0si
x
x0si
x
limsi
xlimsi
2x0x11x01x
2
limx26x5limx21,lim2x26xlim2x22
xx24x5xx2
x3x24x5x3x23
(0807考题)计算limta
8x.x0si
4x
ta
8x
解:
lim
x0
ta
8xsi
4x
lim
x0
x82si
4x4
x
(0801考题)计算limsi
x.x02x
解limsi
x1limsi
x1
x02x2x0x
2
(0707考题)limx22x3limx1x31134x1si
x1x1si
x1
(二)求函数的导数和微分(1小题,11分)
(1)利用导数的四则运算法则uvuv
uvuvuv
(2)利用导数基本公式和复合函数求导公式
l
x1x
xaaxa1
exex
eueuu
si
xcosxcosxsi
xta
xsec2xcotxcsc2x
ex2ex2x22xex2esi
xesi
xsi
xesi
xcosxecosxecosxcosxecosxsi
x
si
ucosuu
cosusi
uu
si
x2cosx2x22xcosx2
cosx2si
x2x22xsi
x2
si
excosexexexcosex
cosesi
exexexsi
ex
类型1:加减法与乘法混合运算的求导,先加减求导,后乘法求导;括号求导最后计算。
11yxx3ex
解:
y
=
x
32
3
e
x
x
32
3
ex
32
1
x2ex
3x2
3
e
x
32
x
12
3
x2
3
e
x
12ycotxx2l
x
解:ycotxx2l
xcsc2xx2l
xx2l
xcsc2x2xl
xx
13设yexta
xl
x,求y.
4
f解:yexta
xl
xexta
xexta
x1exta
xexsec2x1
x
x
类型2:加减法与复合函数混合运算的求导,先加减求导,后复合求导
21ysi
x2l
x,求y
解:ysi
x2l
x2xcosx21x
22ycosexsi
x2,求y
解:ycosexsi
x2si
exexr