坯表面形状的信息。摄像机快速拍摄到光栅图并送入计算机内处理就可得到聚合物薄膜型坯胀大尺寸。MCDL是多通道数据集线器,它可同时采集压力和光栅图信号以便得到胀大过程中压力与聚合物薄膜型坯形状之间的关系。实验证明其测量精度比图7高得多。型坯壁厚尺寸测量有离线测量和在线测量,由于离线测量测简单,因此使用较多。离线测量包括有红外,超声波和千分尺测量。这些方法不仅费时,而且由于离线测量而引起的时间滞后需对加工过程产生的偏差进行修正,导致测量的不精确而出现许多不合格制品。在线测量制品壁厚尺寸能把滞后时间减少到最小,因此提高加工过程工过程产生的偏差修正的精度。Diderichs和Oey
hauser12使用置于模具内的超声波传感器来测量壁厚分布。其测量原理如图10所示。在超声波传感器内压电晶体产生的短超声波在物体,之后被物体壁面反射,返回传感器。被测量物体的壁厚s就等超声波在物体内的速度乘超声波在物体内传送所需时间的一半。但是超声波测量的精度受聚合物性能(如密度、结晶度)与温度的影响很大。4制品冷却及固化阶段研究进展制品冷却及固化是指型坯吹胀紧贴模壁后凭借热扩散率较高的模具和压缩空气进行冷却,冷却至一定温度后开模,再在空气中冷却的过程。一般包括外冷却(制品外表面与模腔间的导热),内冷却(制品内表面与冷却空气或其它介质间的对流传热)及开模后冷却(制品的内外表面与空气或其它介质的自然对流传热)。制品冷却及固化阶段的实验研究主要是测量制品瞬态温度、收缩率、翘曲等。
f制品的瞬态温度一般是利用高灵敏度的热电偶和数据采集器来测量。1981年,Edward13等人设计“半瓶成型实验”来验证其挤出吹塑冷却过程的理论预测。如图11所示。实验中外表面的瞬时温度用热电偶测得,内表面温度在制品一离开模具用辐射高温计测得。其结果与理论预测结果基本一致。1995年Diraddo等14用六个热电偶从模具的不同部位插入制品的不同厚度处,并通过与之连接的温度采集器采集温度,获得制品不同厚度处的瞬态温度,这与只测量内、外表面温度有了较大的改进。而最早测得制品的收缩率是Diraddo等14。他们在模腔内加工出尺寸为5mmx5mm的网格,型坯吹胀后网格印在制品的表面上,这样可直接测出制品在轴向和周向收缩,然后根据质量守恒定律计算径向收缩。制品翘曲一般用三维激光数字系统测量制品的形状15,进而得到制品的收缩和翘曲。5结论实验研究一直是指导工程应用最直接的方法,也是理论研究的基础r