全球旧事资料 分类
722较复杂的乘法原理
教学目标
1使学生掌握乘法原理主要内容,掌握乘法原理运用的方法;2使学生分清楚什么时候用乘法原理,分清有几个必要的步骤,以及各步之间的关系.3培养学生准确分解步骤的解题能力;乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯.
知识要点
一、乘法原理概念引入
老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课.如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?
我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔.这几个环节是必不可少的,老师是一定要先到长宁上完课,才能去黄埔的.在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线.但是要是老师从家到长宁有25种可选择的交通工具,并且从长宁到黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了.这个时候我们的乘法原理就派上上用场了.
二、乘法原理的定义
完成一件事,这个事情可以分成
个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,……,第
步有N种不同的方法.那么完成这件事情一共有A×B×……×N种不同的方法.
结合上个例子,老师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条.
三、乘法原理解题三部曲
1、完成一件事分N个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);
722较复杂的乘法原理题库
教师版
page1of9
f3、步步相乘
四、乘法原理的考题类型
1、路线种类问题比如说老师举的这个例子就是个路线种类问题;2、字的染色问题比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色方法;3、地图的染色问题同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张
包括几个部分的地图有几种染色的方法;4、排队问题比如说6个同学,排成一个队伍,有多少种排法;5、数码r
好听全球资料 返回顶部