米);求大猴下降时,两只猴速度的比:2×2:154:158:3;求这2米小猴爬了多少米:2×(米);
所以相遇的地方距地面:6(米);
答:两只猴子距地面米高的地方相遇.
点评:解答此题关键是,理解两只猴爬行速度的比即是路程的比(相同时间内),求出它们所爬路程的比,问题就容易解决.
12.三个人自A地到B地,两地相距36千米,三个人只有一辆自行车,这辆车只能坐两人,自行车的速度比步行速度快两倍.他们三人决定:第一个人和第二个人同乘自行车,第三个人步行.这三个人同时出发,当骑车的二人到达某点C时,骑车人放下第二个人,立即沿原路返回去接第三个人,到某处D与第三个人相遇,然后两人同乘自行车前往B;第二个人在C处下车后继续步行前往B地.结果三个人同时到达B地.那么,C距A处多少千米?D距A处多少千米?
考点:相遇问题;追及问题。1923992
分析:此题可以通过画图分析,逐步理清解题思路,关键是弄清骑车的速度与步行的速度之间的关系,由“自行车的速度比步行速度快两倍”.可知自行车的速度是步行速度的3
全国奥数网wwwaoshucom版权所有谢绝转载
f全国奥数信息资源门户网站wwwaoshucom
倍,由此解答即可.解答:解:如图,第一、二两人乘车的路程AC,应该与第一、三两人骑车的路程DB相等,
否则三人不能同时到达B点.同理ADBC.
当第一人骑车在D点与第三人相遇时,骑车人走的路程为AD2CD,第三人步行路程为AD.因自行车速度比步行速度快2倍,即自行车速度是步行的3倍,故AD2CD3CD,从而ADCDBC.因AB36千米,故ADCDBC12千米,故C距A24千米,D距A12千米.答:C距A处24千米,D距A处12千米.点评:此题数量关系比较复杂,可以通过画图分析,理清解题思路,寻求解答方法.
13.铁路旁一条平行小路上,有一行人与一骑车人同时向南行进,行人速度为每小时36公里,骑车人速度为每小时108公里.这时有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟.这列火车的车身长多少米?
考点:列车过桥问题。1923992
分析:行人速度为36公里时1米秒.骑车人速度为18公里时3米秒.骑车人与行人速度差为(31)米秒,因为列车经过行人与骑车人时所行的路程即是列车的长度,因
此火车车身长为:(31)÷(
).
解答:解:(31)÷(
),
2÷,
286(米).这列火车的车身长286米.点评:此题属于列车过桥问题,在此题中把火车的车身长看作单位“1”比较简便.
14.一条小河流r