真题
22.(8分)(2014扬州)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.
(1)若他去买一瓶饮料,则他买到奶汁的概率是
;
(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.
考点:列表法与树状图法;概率公式有
分析:(1)由商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他恰好买到雪碧和奶汁的情况,再利用概率公式即可求得答案.
解答:解:(1)∵商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,
∴他去买一瓶饮料,则他买到奶汁的概率是:;
故答案为:;
(2)画树状图得:
∵共有12种等可能的结果,他恰好买到雪碧和奶汁的有2种情况,∴他恰好买到雪碧和奶汁的概率为:.
点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率所求情况数与总情况数之比.
f2014年中考真题
23.(10分)(2014扬州)如图,已知Rt△ABC中,∠ABC90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DF、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.
考点:旋转的性质;正方形的判定;平移的性质分析:(1)根据旋转和平移可得∠DEB∠ACB,∠GFE∠A,再根据∠ABC90°可得
∠A∠ACB90°,进而得到∠DEB∠GFE90°,从而得到DE、FG的位置关系是垂直;(2)根据旋转和平移找出对应线段和角,然后再证明是矩形,后根据邻边相等可得四边形CBEG是正方形.解答:(1)解:FG⊥ED.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE∠A,∵∠ABC90°,∴∠A∠ACB90°,∴∠DEB∠GFE90°,∴∠FHE90°,∴FG⊥ED;
(2)证明:根据旋转和平移可得∠GEF90°,∠CBE90°,CG∥EB,CBBE,∵CG∥EB,∴∠BCG∠CBE90°,∴∠BCG90°,∴四边形BCGE是矩形,∵CBBE,∴四边形CBEG是正方形r