全球旧事资料 分类
第一章前言
11课题的意义:
本毕业设计旨在学习并比较各种自适应控制算法,掌握matlab语言,利用simuli
k对自适应控制系统模型进行仿真分析。自适应控制是人们要求越来越高的控制性能和针对被控系统的高度复杂化,高度不确定性的情况下产生的,是人工智能渗入到应用科技领域的必然结果。并在常规控制理论的基础上得到进一步的发展和提高。进入21世纪以来,智能控制技术和远程监测技术继续飞速发展,逐渐被应用到电力、交通和物流等领域。从卫星智能控制,到智能家居机器人;从公共场所的无线报警系统,到家用煤气、自来水等数据的采集。可以说,智能控制技术和远程监测技术己经渗透到了人们日常生活之中,节约了大量的人力和物力,给人们的日常生活带来了极大的便利。目前,自适应控制的研究以认知科学、心理学、社会学、系统学、语言学和哲学为基础,有效的把数字技术、远程通信、计算机网络、数据库、计算机图形学、语音与听觉、机器人学、过程控制等技术有机的结合,提供了解决复杂问题的有效手段。自适应控制是在人们在追求高控制性能、高度复杂化和高度不确定性的被控系统情况下产生的,是人工智能渗入到应用科技领域的必然结果,并在常规控制理论的基础上得到进一步的发展和提高。主要研究对象从单输入、单输出的常系数线性系统,发展为多输入、多输出的复杂控制系统。自适应控制理论的产生为解决复杂系统控制问题开辟了新的途径,成为当下控制领域的研究和发展热点。
12国内外研究概况及发展趋势:
1943年,心理学家WMcculloch和数理逻辑学家WPitts在分析、总结神经元基本特性的基础上首先提出神经元的数学模型。此模型沿用至今,并且直接影响着这一领域研究的进展。因而,他们两人可称为人工神经网络研究的先驱。1945年冯诺依曼领导的设计小组试制成功存储程序式电子计算机,标志着电子计算机时代的开始。1948年,他在研究工作中比较了人脑结构与存储程序式计算机的根本区别,提出了以简单神经元构成的再生自动机网络结构。但是,由于指令存储式计算机技术的发展非常迅速,迫使他放弃了神经网络研究的新途径,继续投身于指令存储式计算机技术的研究,并在此领域作出了巨大贡献。虽然,冯诺依曼的名字是与普通计算机
1
f联系在一起的,但他也是人工神经网络研究的先驱之一。50年代末,FRose
blatt设计制作了“感知机”,它是一种多层的神经网络。这项工作首次把人工神经网络的研究从理论探讨付诸工程实践。当时,世界上许r
好听全球资料 返回顶部