全球旧事资料 分类
龙源期刊网httpwwwqika
comc
深度学习浅谈
作者:沈荣张保文来源:《电脑知识与技术》2017年第16期
摘要:文中对深度学习的发展现状及合作领域进行了阐述,对深度学习的基本模型进行了介绍。主要对卷积神经网络的基本模型进行了介绍,对卷积神经网络模型的基本工作原理进行初步分析,对深度置信网络和循环神经网络进行了基本描述,为后续深度学习及卷积神经网络的深入学习打下基础。
关键词:深度学习;机器学习;卷积神经网络
1概述
深度学习(DeepLear
i
g)是人工智能、图像建模、模式识别、神经网络、最优化理论和信号处理等领域的交叉学科,主要构建和模拟人脑进行分析学习,它属于机器学习的新兴领域。
2大数据与深度学习
目前,光学检测、互联网、用户数据、互联网、金融公司等许多领域都出现了海量数据,采用BP算法对于训练神经网络出现了梯度越来越稀疏、收敛到局部最小值只能用有标签的数据来训练等缺点。Hi
to
于2006年提出了深度学习的概念,Lecu
等人提出了卷积神经网络,卷积神经网络利用空间关系减少参数数目以提高训练性能。
CPU和GPU计算能力大幅提升,为深度学习提供了硬件平台和技术手段,在海量大数据处理技术上解决了早期神经网络训练不足出现的过拟合、泛化能力差等问题。
大数据和深度学习必将互相支撑,推动科技发展。
3深度学习模型
深度学习模型实际上是一个包含多个隐藏层的神经网络,目前主要有卷积神经网络,深深度置信神经网络,循环神经网络。
1)卷积神经网络
在机器学习领域,卷积神经网络属于前馈神经网络的一种,神经元不再是全连接的模式,而是应用了局部感受区域的策略。然而传统的神经网络使用神经元间全连接的网络结构来处理图像任务,因此,出现了很多缺陷,导致模型参数急剧增加,及其容易过拟合。
f龙源期刊网httpwwwqika
comc
在卷积神经网络中,网络中的神经元只与前一层的部分神经元连接,利用图像数据的空间结构,邻近像素间具有更强的相关性,单个神经元仅对局部信息进行响应,相邻神经元感受区域存在重叠,因此,综合所有神经元可以得到全局信息的感知。
另外,一个卷积层中的所有神经元均由同一个卷积核对不同区域数据响应而得到,即共享同一个卷积核,使得卷积层训练参数的数量急剧减少,提高了网络的泛化能力。
一般在卷积层后面会进行降采样操作,对卷积层提取的特征进行聚合统计。降采样区域一般不存在重叠现象。降采样简化了卷积层的输出信息,进一步减少了训练参数的数量,增强了网络的泛r
好听全球资料 返回顶部