变软件来实现新业务和使用新技术,大大降低了设备商的新通信产品开发成本和周期,同时也降低了运营商的投资。
实现软件无线电还需克服以下技术难点。(一)多频段天线的设计。软件无线电的天线需要覆盖多个频段,以满足多信道不同方式同时通信的需求,而射频频率和传播条件的不同,使得各频段对天线的要求存在着较大的差异,因此多频段天线的设计成为软件无线电技术实现的难点之一。(二)宽带AD、DA转换。根据奈奎斯特抽样定理,要从抽样信号中无失真地恢复原信号,抽样频率应大于2倍信号最高频率。而目前AD、DA的最高采样频率受到其性能的限制,从而也限制了所能处理的已调信号频率。(三)高速DSP数字信号处理器。高速DSP芯片主要完成各种波形的调制解调和编解码过程,它需要有更多的运算资源和更高的运算速度来处理经宽带AD、DA变换后的高速数据流,因此其芯片有待进一步研发。
智能天线
智能天线定义为波束间没有切换的多波束或自适应阵列天线。多波束天线在一个扇区中使用多个固定波束,而在自适应阵列中,多个天线的接收信号被加权并且合成在一起使信噪比达到最大。与固定波束天线相比,天线阵列的优点是除了提供高的天线增益外,还能提供相应倍数的分集增益。但是它们要求每个天线有一个接收机,还能提供相应倍数的分集增益。
智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,其基本工作原理是根据信号来波的方向自适应地调整方向图,跟踪强信号,减少或抵消干扰信号。智能天线可以提高信噪比,提升系统通信质量,缓解无线通信日益发展与频谱资源不足的矛盾,降低系统整体造价,因此其势必会成为4G系统的关键技术。智能天线的核心是智能的算法,而算法决定电路实现的复杂程度和瞬时响应速率,因此需要选择较好算法实现波束的智能控制。
目前2G通信系统中采用的天线分为全向天线和定向天线两种,全向天线应用于360°覆盖的小区,定向天线应用于小区分裂后的部分覆盖小区。这两种天线覆盖的区域形状都是不变的,因此对于基站来说,给每个移动用户的下行信号是广播式发送的,这样势必会引起系统干扰,并降低了系统容量。
智能天线采用了空分多址SDMA的技术,利用信号在传输方向上的差别,将同频率或同时隙、同码道的信号进行区分,动态改变信号的覆盖区域,使主波束对准用户方向,旁瓣或零陷对准干扰信号方向,并能够自动跟踪用户和监测环境变化,为每位用户提供优质的上行链路和下行链路信号,从而达到抑r