vert)用法是几何模型转换为网格模型,点转换为节点,曲线转换为线单元,面转换为三角形、四边形等。网格自动划分(AutoMesh)则是在任意曲面上生成三角形或者四边形,对任意几何体生成四面体或者六面体。
网格重划分(Remesh)是在每一步计算过程中,检查各单元法向来判定各区域的曲率变化情况,在曲率较大变形剧烈的区域单元,进行网格加密重新划分,如此循环直到满足网格单元的曲率要求为止。网格重划分的思想是通过网格加密的方法来提高分析的精度和效率。网格自适应划分(AdaptiveRefi
eme
t)的思想是在计算步中,升高不满足分析条件的低阶单元的阶次来提高分析的精度和效率,应用比较广泛。自适应网格划分必须采用适当的单元,在保证单元阶次的基础上,原本已形成的单元刚度矩阵等特性保持不变,才能同时提高精度和效率。阶谱单元(HierachicalEleme
t)充分发挥了自适应网格划分的优点,在计算中通过不断增加初始单元的边上的节点数,从而使单元插值函数的阶次在前一阶的基础上不断增加,通过引入新增节点的插值函数来提高求解的精度和效率。例如,三节点三角形单元升为六节点三角形单元,四节点四边形单元升阶为8节点四边形单元,四节点四面体单元升阶为8节点、10节点、20节点四面体。
2.有限元网格划分的基本方法
有限元网格划分方法有两种,对于简单的结构多采用直接建立单元模型的网格直接生成法,当对象比较复杂时,多通过几何自动生成法来完成,即在几何元素描述的物理基础上自动离散成有限单元。有限元单元可以按几何维数划分为一维、二维和三维单元,而在实际应用中采用拓扑结构单元,包括常用的质量单元、弹簧元、杆与梁管单元、平面三角形单元、平面四边形单元、膜单元、等参单元、壳单元和三维实体单元。有限元网格划分,对于二维平面、三维曲面和三维实体网格有以下几种划分方法:
f(1)覆盖法:基于四边形的网格划分,要求网格划分的平面或曲面必须是完整裁减曲面,该曲面边界必须是裁减曲线;
(2)前沿法:通过把曲面等参变换到二维空间进行网格划分,然后映射到三维空间曲面上,把曲面划分成完全的四边形单元或三角形单元;
(3)Delau
ay三角形法:主要用于由至少一条封闭曲线所围成的单连通域或多连通域内生成三角形单元,趋向于等边三角形。充分考虑了几何形状中细微的几何特征,并在微小特征处划分成较细的单元,在不需要密网格处,采用稀疏单元网格。
(4)转换扩展法:针对曲面几何形状比较规则的几何区域进行网格划分,其r