子内电荷转移(ICTi
tramolecularchargetra
sfer)、荧光共振能量转移(FRETfluoresce
cereso
a
cee
ergytra
sfer)等。1光诱导电子转移原理(PET)
光致电子转移是指电子给体或电子受体受光激发后,激发态的电
f子给体与电子受体之间发生电子转移的过程。典型的光致电子转移荧光探针体系是由具有电子给予能力的识别基团R通过连接基团S和荧光基团相连组成的功能分子。
一般情况下,荧光分子探针的识别基团是电子给体,荧光基团是电子受体,并且通常情况下多采用含有氨基的基团作为识别基团。具体PET工作过程如下:在识别基团与待测物种结合之前,当荧光基团受激发,具有给电子能力的识别基团能够使其处于最高占据轨道的电子转入激发态荧光团因电子激发而空出的电子轨道,使被光激发的电子无法直接跃迁到原基态轨道发射荧光,导致荧光基团的荧光猝灭。而识别基团与待测物种结合之后,由于降低了识别基团的给电子能力,光致电子转移过程被减弱或者不再发生,荧光基团的荧光发射得到恢复(如图19)。
PET
PET
荧光基团
连接体
Fluorophoreli
ker
识别基团
Recepter
荧光基团
连接体
Fluorophoreli
ker
识别基团
Recepter
hexc
hfluo
a
hexc
hfluo
b
图19荧光分子光致电子转移的“开”“光”过程示意图。
由于与待测物种结合前后的荧光强度差别很大,呈现明显的“关”、“开”状态,因此这类荧光分子探针又被称为荧光分子开关。PET荧光分子探针的作用机制可由前线轨道理论2来进一步说明(见图110)。从图可以看出,识别基团处于自由态时,其HOMO轨道上的
f电子可以向荧光基团的HOMO轨道上转移,致使荧光基团被激发到LUMO上的激发态电子不能返回基态而难以产生荧光,此过程对应于发生PET现象。在识别基团与待测物种结合后,识别基团上的HOMO电子已无法转移到荧光基团的HOMO轨道上,使PET过程无法进行,这时荧光基团的激发态电子可以返回基态,产生荧光。由此可见,利用识别基团对PET过程的控制可以实现对体系荧光发射状态的调控。
荧光团
结合受体前
荧光团
结合受体后
图110光致电子转移机制机制的前线轨道理论解释。
化合物1是一个非常典型的PET机理荧光增强型的例子。锌离子不存在时,由于识别基团中氮原子上的孤对电子能够在荧光基团受激发态时占据激发态荧光团因电子激发而空出的电子轨道,使被光激发的电子无法直接跃迁到原基态轨道发射荧光,导致荧光基团的荧光猝灭,即发生了光致电子转移(PET)。当Z
2存在时,Z
2离子与两个吡啶氮及氨基配位,r