全球旧事资料 分类
第五章二项树定价模型
这一章我们讨论期权和期货的二项树定价模型,这一模型为理解衍生证券的定价和套期保值提供了简单但有力的饿方法。至今为止,有三种不同的期权定价模型。第一种模型是Black和Scholes(1973)建立的。在市场无摩擦、存在可连续交易的假设下,由持有股票的多头头寸,和持有以此股票为标的物的欧式看涨期权的空头头寸,形成一个无风险的套期保值证券组合。这种思路是解决期权定价问题的关键。第二种模型是从Harriso
和Kreps(1979)开始的。在市场无摩擦和完备的假设下,市场无套利等价于存在唯一的等价鞅测度,市场上的任何证券的折现价格在这个测度之下为一个鞅。第三种是比较直观的模型。这种模型采用二项分布,是由Cox,Ross和Rubi
ster
(1979),Re
dlema
和Bartter(1979)独立得到的。前两种模型需要随机微分方程和鞅等复杂的数学工具。除了容易理解外,第三种模型二项树定价模型。不仅为欧式看涨期权提供闭形式的解,而且在用数字计算方法解决更复杂的美式期权定价问题时,这种方法也能提供解。所以,我们先在这一章里介绍第三种模型二项树定价模型。该模型由Sharpe(1978)提出,CoxRossa
dRubi
stei
(1979)对它进行了拓展。尽管最初提出二项树定价模型的目的是为了避开随机分析来解释BlackScholesMerto
模型,但现在该模型已成为对复杂衍生证券进行定价的标准数值计算程序。关于后两种模型,我们在以后的章节中讨论。在应用二项树定价模型时,最重要的是合成构造(sy
theticco
structio
)或者套期保值hedgi
g的概念。为了给看涨期权定价,利用股票和债券去复制期权的值。这个证券组合称为合成看涨期权。由无套利原理,这个证券组合的成本等于期权的价格。合成构造的程序不仅给出了期权的定价方式,也给出了套期保值的方法。套期保值最形象、最简单的例子是有关保险中的定价问题。假设一种人身保险,对象为60岁健康的老人:如果从投保之日起,在一年之内被投保人去世,保险公司支付投保人100000元,否则,保险公司不支付任何款项。这种险种的价格为2300元。现在,某公司60岁的总裁向你贷款,条件是,如果一年后他还健在,他支付给你100000元,否则,你回收不了任何贷款。问题是,你到底应该贷多少给这位总裁。代表这位总裁答应支付给你100000元的这份协议,其实是你购买的一份证券,从这个角度来看,问题变成,这份证券的价格为多少?由无套利原理,这个价格显然依赖于市场上已有的证券:保险公司的保险和无风险利率。作为投资者r
好听全球资料 返回顶部