;第四环节:乘胜追击,完善性质;第五环节:建构新知,发展问题;第六环节:合作交流,解决问题;第七环节:反思交流,反馈提高。
第一环节:创设情景,导入新课
活动内容:1、平行四边形具有哪些性质?2、探究矩形的定义。
利用一个活动的平行四边形教具演示使平行四边形的一个内角变化,让学生注意观察。在演示过程中让学生思考:(1)在运动过程中四边形还是平行四边形吗?(2)在运动过程中四边形不变的是什么?(3)在运动过程中四边形改变的是什么?不变:对边仍保持相等,对边仍分别平行,所以仍然是平行四边形变:角的大小(4)角的大小改变过程中有特殊值吗?这时的平行四边形是什么图形。(矩形)矩形的定义:有一个内角是直角的平行四边形是矩形
fA
D
A
D
一个角变形成直角
B
C
B
C
活动目的:从学生的已有的知识出发,通过教具演示,让学生经历了矩形概念的探究过程,自然而然地形成矩形的概念
活动的注意事项:让学生观察从平行四边形到矩形的变化过程,事实上是在
学生已有的平行四边形相关认知的基础上建构,让他们认识到矩形是平行四边形但却是角度特殊的平行四边形。从而自然得到矩形定义需满足两个条件。(1)平行四边形,(2)有一个角是直角。定义是本节的关键点,因此观察过程不能省略。
第二环节:分组讨论,探究新知
活动内容:1既然矩形是平行四边形那么它具有平行四边形的哪些性质?
在同学回答的基础上进行归纳:
性质
边
角
类别
对角线
对称性
矩形
对边平行且相等
对角相等
中心对对角线互相平分
称图形
2但矩形是特殊的平行四边形,它还具有一些特殊性质。下面我们来进一步研究矩形的其他性质。
(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四条边长度、四个角度数和对角线的长度及夹角度数,并记录测量结果;
f(2)根据测量的结果,猜想结论。当矩形的大小不断变化时,发现的结论是否仍然成立?
(3)通过测量、观察和讨论,你能得到矩形的特殊性质吗?
教师在学生口答的基础上,引导学生得出(板书):
矩形的性质定理1:矩形的四个角都是直角
矩形的性质定理2:矩形的对角线相等
活动目的:让学生分组探索。教师可引导学生,根据研究平行四边形获得的经验,分别从边、角、对角线三个方面探索矩形的特性,还可提醒学生,这种探索的基础是矩形“有一个角是直角”,学生通过动手测量动脑思考动口讨论自主发现矩形的性质。
活动的注意事项:学生通过对比平行四r