244题二:1S
=2
2-4
2
2略
详解:1设S
=A
+B
+CA≠0,
2ABC则04A2BC解得A=2,B=-4,C=069A3BC
故S
=2
2-4
2证明:∵当
=1时,a1=S1=-2当
≥2时,a
=S
-S
-1=2
2-4
-2
-12-4
-1=4
-6∴a
=4
-6
∈N.a
+1-a
=4,∴数列a
是等差数列题三:64a1+6d3a1+3d4×33×2详解:依题意得S4=4a1+d=4a1+6d,S3=3a1+d=3a1+3d,于是有-=1,由此解得d=6,22129即公差为6题四:1a
=9
-8;2Sm92m1-10×9m+180
+
详解:1因为a
是一个等差数列,所以a3+a4+a5=3a4=84,所以a4=28设数列a
的公差为d,则5d=a9-a4=73-28=45,故d=9由a4=a1+3d,得28=a1+3×9,即a1=1,所以a
=a1+
-1d=1+9
-1=9
-8
∈N.2对m∈N,若9ma
92m,则9m+89
92m+8,因此9m1+1≤
≤92m1,故得bm=92m1-9m1于是Sm=b1+b2+b3+…+bm=9+93+…+92m1-1+9+…+9m19×1-81m1-9m-1-811-9
第3页
f92m1-10×9m+180
+
题五:B详解:∵a
1-a
=-3,∴数列a
是以19为首项,-3为公差的等差数列,∴a
=19+
-1×-3=22-3
设前k项和最大,则有解得
ak0a0k1
即
223k0223k10
1922≤k≤∵k∈N,∴k=7故满足条件的
的值为733
题六:C2222详解:∵a2
1-a
=1,∴数列a
是以a1=1为首项,1为公差的等差数列.∴a
=1+
-1=
又a
0,∴a
=
∵a
5,∴
5即
25故
的最大值为24题七:1S
=32
-
22
=16时,S
有最大值256详解:1∵S10=a1+a2+…+a10,S22=a1+a2+…+a22,又S10=S22,∴a11+a12+…+a22=0,即
12a11a222
=0,故a11+a22=2a1+31d=0
又∵a1=31,∴d=-2,∴S
=
a1+
12
d=31
-
-1=32
-
2
2由1知S
=32
-
2,故当
=16时,S
有最大值,S
的最大值是256
题八:1略2当
=3时,a
取得最小值-1;当
=4时,a
取得最大值311详解:1证明:∵a
=2-
≥2,
∈N,b
=a
1a
-111∴
≥2时,b
-b
1=-=a
-1a
-1-1
1
121a
1
a
-111-=-=1a
-1-1a
-1-1a
1-1
15又b1==-2a1-15∴数列b
是以-为首项,1为公差的等差数列.272由1知,b
=
-,212则a
=1+=1+,b
2
-72设函数fx=1+,2x-7易知fx在区间
77和r