2016年中考数学总复习第11讲:二次函数与几何(压轴题)
【方法总结回顾】分为:二次函数与线段及角、等腰三角形、直角三角形、相似三角形、平行四边形、矩形、菱形、正方形、圆、面积等问题)重要思想:①分类讨论→代表性题型:动态几何问题,存在性讨论问题;②转化思想(待定系数)
→代表性题型:面积问题,二函数图象与坐标轴的交点距离、二次函数与一次函数交点距离等;
③最短路径→代表性题型:利用二次函数的对称性求三角形的周长最小时点的坐标;④尺规作图→代表性题型:二次函数中求出直角三角形与等腰三角形时点的坐标,采用直角三角板与圆规进行尺规作图分析;⑤极端值思想→代表性题型:动态几何问题,动态函数问题;⑥数形结合思想→代表性题型:函数与几何综合题。二次函数解析式的确定:1、设一般式,即:设特点及应用范围:。2、设顶点式,即:设特点及应用范围:。3、设交点式,即:设特点及应用范围:。注:求二次函数解析式,根据具体同象特征灵活设不同的关系或除上述常用方法以外,还有:如抛物线顶点在原点可设;以y轴为对称轴可设;顶点在x轴上可设;抛物线过原点等。【重要考点解析】例1.(2015枣庄)如图,直线yx2与抛物线yaxbx6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求△PAC为直角三角形时点P的坐标.
2
1
f例2.(2015酒泉)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.
例3.(2015阜新)如图,抛物线yxbxc交x轴于点A(3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP4S△BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.
2
2
f例4.(2015黔东南州)如图,已知二次函数y1x
2
xc的图象与x轴的一个交点为Ar