.∴AB=3∵C3,-1,∴xC-xA=3--1=411∴S△ABC=ABxC-xA=×3×4=622m4.解:1把A14代入y2=,得m=1×4=4,x4∴y2=x4把B4,
代入y2=得
=1,∴B41.x
a+b=4,把A14和B41代入y1=ax+b得4a+b=1,a=-1,解得b=5
∴y1=-x+52设点P的坐标为a,a,代入y1=-x+5得a=-a+5,解得a=25∴P2525.
f3设点M的横坐标为m,∴点M的坐标为m,-m+5.4∵MN垂直于y轴,∴点F的坐标为-m+5,-m+5
4∴MF=m--m+54511519m-2+∴S△MOF=m--m+5×-m+5=-m2+m-2=-28222259∴当m=时,△MOF的面积有最大值为2815.解:14,;2k2【提示】∵反比例函数y2=的图象过点B-8,-2,x∴k2=-8×-2=1616即反比例函数解析式为y2=x16将点A4,m代入y2=,得m=4,即点A44.x将点A44,B-8,-2代入y1=k1x+b,
4k+b=4,k=,得解得2-8k+b=-2,b=2
1∴一次函数解析式为y1=x+2212∵一次函数解析式为y1=x+2,∴当x=0时,y=22∴点D的坐标为02.1163由1知,y1=x+2,y2=,2x∵点A的坐标为44,∴AE=OE=4当y1=0时,x=-4∴C-40.∴CE=OC+OE=4+4=811∴S△ACE=CEAE=×8×4=1622∵S△ACE∶S△OEF=4∶1,11∴S△OEF=×16=4,即OEEF=442∴EF=2∴点F坐标为42.
1
f1又点F在直线OP上,∴直线OP的解析式为y=x2
y=2x,联立方程组得16y=x,
∴点P的坐标为42,2
1
x1=4解得y1=2
2.
x2=-4或2,y2=-2
2,
2,2
舍去
6.解:1∵A50,∴OA=52OC2∵ta
∠OAC=,∴=,解得OC=25OA5∴C0,-2.∴BD=OC=2∵B03,BD∥x轴,∴D-23.6∴m=-2×3=-6∴y=-x∵直线y=kx+b过A50,C0,-2,
5k+b=0,k=,∴解得5b=-2,
2
b=-2
2∴y=x-25
2AC=CD且AC⊥CD;理由:∵B03,C0,-2,∴BC=5=OA又∠AOC=∠DBC,OC=BD,∴△OAC≌△BCD∴AC=CD∴∠OAC=∠BCD∴∠BCD+∠BCA=∠OAC+∠BCA=90°
图1∴AC⊥CD3如图1,连接AD,∵AE=OC,BD=OC,∴AE=BD∴四边形AEBD为平行四边形.∴AD∥BM∴∠BMC=∠DAC∵AC=CD,AC⊥CD,∴△ACD为等腰直角三角形.∴∠BMC=∠DAC=45°
ffr