全球旧事资料 分类
取值范围是(A)02【答案】:A【解析】BE1:(B)03(C)12(D)13
222,BFBE,22
AB2BF2,
【考点定位】本题考查棱锥的结构特征,考查空间想象能力,极限思想的应用,是中档题..(10)设函数fxx24x3gx3x2集合MxRfgx0
NxRgx2则MN为
(A)1【答案】:D
2【解析】:由fgx0得gx4gx30则gx1或gx3即321或323
xx
(B)(0,1)(C)(1,1)(D)1
所以x1或xlog35;由gx2得322即34所以xlog34故MN1
x
x
二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。(11)首项为1,公比为2的等比数列的前4项和S4【答案】:15【解析】S4:
1241512
【考点定位】本题考查等比数列的前
项和公式(12)函数fxxax4为偶函数,则实数a
f(13)设
cos△ABC的内角A、B、C的对边分别为a、b、c,且a1,b2,C
【答案】:
1,则si
B4
154
(14)设
P为直线y
bx2y2x与双曲线221a0b0左支的交点,F1是左焦点,PF1垂直于x轴,3aab
则双曲线的离心率e
(15)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其它三门艺术课各1节,则在课表上的相邻两节文化课之间至少间隔1节艺术课的概率为(用数字作答)。【答案】:
15
f三、解答题:本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤。16.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分))已知
a
为等差数列,且
(Ⅰ)求数列a
的通项公式;(Ⅱ)a
的前
项和为S
,a1akSk2记若a1a38a2a412成等比数列,求正整数k的值。【答案】(Ⅰ)a
2
(Ⅱ)k6:【解析】::(Ⅰ)设数列a
的公差为d由题意知所以a
a1
1d22
12
(Ⅱ)由(Ⅰ)可得S

2a12d82a14d12
解得a12d2
a1a
22

1
22
,即
因a1akSk2成等比数列,所以
a2ka1Sk2
从而2k2k2k3
2
k25k60
解得k6或k1(舍去),因此k6。
317.(本小题满分13分)已知函数fxaxbxc在x2处取得极值为c16
(1)求a、b的值;(2r
好听全球资料 返回顶部