提出了高可靠性要求之外,对控制理论也不断提出新要求,希望能不断解决新出现的控制难题,自动控制的发展主要包括两个方面:(1)控制理论的发展;(2)控制系统规模及组成结构和硬件的发展。
112自动控制理论的发展
“经典控制理论”阶段上世纪50年代前发展的控制理论被称为“古典控制理论”。它主要研究的自动控制系统为线性
定常系统,被控对象集中于SISO系统。经典控制理论所采用的方法通常是以传递函数、频率特性、根轨迹分布为基础的波德图法和根轨迹法,包括各种稳定性判据和对数频率特性。“现代控制理论”阶段60年代以后发展起来的现代控制理论主要研究MIMO系统。系统可以是线性或非线性的,定常或时变的。它采用状态方程代替经典理论中的一个高阶微分方程式来描述系统,并且系统中各个变量均为时间t的函数,因而属于时域分析方法。采用状态方程的好处可以研究系统的内部特性,可以分析系统的本质。主要内容包括:(1)系统运动状态的描述和能控性、能观性分析;(2)李亚谱诺夫稳定性理论和李亚谱诺夫函数,系统识别和卡尔曼滤波理论;(3)非线性系统控制;(4)系统最优控制及自适应控制“大系统理论和先进控制理论”阶段前两个阶段的控制理论的发展与应用,主要讨论存在数学模型的自动控制系统,但是对于那些不具有数学模型或很难找到数学模型的被控对象,应用经典控制理论的方法等无法解决。但是,由于计算机技术的快速发展和价格的下降,使计算机的应用领域越来越宽,先进控制日益发展和应用起来了。先进控制主要包括自适应控制、预测控制、智能控制、鲁棒控制等。人工智能学科的发展促进了自动控制理论向着智能控制方向发展,而智能控制和具有智能化的自动控制系统又是人工智能的一个既有广泛应用前景的研究领域。年代末开始的智能控制理论和大系统理论的研究与应用,70
1
f是现代控制论在深度上和广度上的开拓,因此在控制工程界受到极大的关注,主要包括:专家系统、神经网络和模糊控制、学习控制等。智能控制具有如下特点:以专家和熟练操作工人的知识为基础进行推理、判断、预测和规划,采用符号信息处理、启发式程序设计,知识表示和自学习、推理与决策的智能化技术,实现问题的综合性求解。先进控制离不开前两个阶段的控制理论,只是把自动控制理论推向一个更深化的崭新阶段。
12控制系统规模、组成结构和硬件的发展
121初级阶段
本世纪50年代前后,热工生产过程主要是凭生产实践经验,局限r