。数学思想剖析:以上两种方法数学思想依据是猜证结合思想。很多时候,有些题目好像可以直接得到答案,可是写出解题过程却不那么容易,这时候我们可以对问题做出大胆的猜想,然后根据已知来证明猜想的正确性,这就是猜证结合思想。在公务员行测考试中,我们常常用特值法、归纳法这两种方法来提出猜想,然后用综合法、分析法、穷举法、反证法等四种方法来证明我们提出的猜想。三:推导法我们处理事情或是解题的习惯思维是从事情的起始状态,根据将要发生的变化,推断结束时的状态递推法是利用问题本身所具有的一种递推关系求解问题的一种方法。用递推法解题,首先是要列出符合题意的递归关系式递归方程,再解方程。通常办法是按某一元素或位置或某一方式进行分类讨论,从而得出问题间的递推关系。例题:2009年行测真题一个边长为80厘米的正方形,依次连接四边中点得到第二个正方形,这样继续下去可得到第三个、第四个、第五个、第六个正方形,问第六个正方形的面积是多少平方厘米A128平方厘米B162平方厘米C200平方厘米D242平方厘米【答案】C。
数学思想剖析:推导法数学思想依据是化归思想。所谓“化归”,就是转化和归结。在解决数学问题时,人们常常将待解决的问题甲,通过某种转化过程,归结为一个已经解决或者比较容易解决的问题乙,然后通过问题乙的解答返回去求得原问题甲的解答,这就是化归方法的基本思想。总而言之,化归就是要化复
f杂为简单,化陌生为熟悉。推导法是最常用的化归方法。化归方法还有分解与组合、构造法、定义回归法和升降维立体化归等。四、分合法分合法主要包括分类讨论法和分步讨论法两种。在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。而分步讨论法则是指有时候有些问题我们一步是无法解决的,此时需要把问题进行分步,按步骤一步一步地解决。例题1:2009年行测真题有一批长度分别为3、4、5、6和7厘米的细木条,它们的数量足够多,从中适当选取3根木条作为三角形的三条边,可能围成多少个不同的三角形A25个B28个C30个D32个【答案】D。解析:分情况讨论,1等边三角形,有5种2等腰三角形,3为腰时,4,5可为底4为腰时,3,5,6,7可为底5为腰时,3,4,6,7可为底6为腰时,3,4,5,7可为底7为腰时,3,4,5,6可为底。3三边互不相等时,3,4,7不能构成三角形,共有19种。综上所述,共有5244449r