分配问题;压轴题.【分析】由题意可得现在A种饮料的重量为40千克,B种饮料的重量为60千克,可根据“混合后的两种饮料所含的果蔬浓度相同”来列等量关系.【解答】解:设原来A种饮料的浓度为a,原来B种饮料的浓度为b,从每种饮料中倒出的相同的重量是x千克.由题意,得,
化简得(5a5b)x120a120b,即(ab)x24(ab),∵a≠b,∴x24.∴从每种饮料中倒出的相同的重量是24千克.故答案为:24.【点评】此题考查的知识点是一元一次方程的应用,当一些必须的量没有时,可设出相应的未知数,只把所求的量当成未知数求解.找到相应的等量关系是解决问题的关键.
16.某市为治理污水,需要铺设一段全长为300m的污水排放管道.铺设120m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20,结果共用30天完成这一任务、求原计划每天铺设管道的长度,如果设原计划每天铺设xm管道,那么根据题意,可得方程或.
f【考点】由实际问题抽象出分式方程.【分析】所求的是原计划的工效,工作总量是300,一定是根据工作时间来列的等量关系.本题的关键描述语是:“后来每天的工效比原计划增加20”;等量关系为:结果共用30天完成这一任务.【解答】解:因为原计划每天铺设x(m)管道,所以后来的工作效率为(120)x(m),根据题意,得30.或故答案为:或.
【点评】本题考查了由实际问题抽象出分式方程.应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间按原计划的工效铺设120m的天数后来的工效铺设的天数.
三、解答题(本大题共5小题,共36分)17.化简:.
【考点】分式的混合运算.【分析】根据分式混合运算的法则进行计算即可.【解答】解:原式
.【点评】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.
f18.已知x3y0,求【考点】分式的化简求值.【专题】计算题.
(xy)的值.
【分析】首先将分式的分母分解因式,然后再约分、化简,最后将x、y的关系式代入化简后的式子中进行计算即可.【解答】解:(2分)
;
当x3y0时,x3y;原式.(8分)
【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.
19.(2015秋邢台期末)解方程:(1)(2)r