过程中的初始因子载荷矩阵中的元素是第j个公共因子,是第i个原观测变量的特殊因子。且此处的与的均值都为0,方差都为1。
3主成分的各系数,是唯一确定的、正交的。不可以对系数矩阵进行任何的旋转,且系数大小并不代表原变量与主成分的相关程度;而因子模型的系数矩阵是不唯一的、可以进行旋转的,且该矩阵表明了原变量和公共因子的相关程度。
4主成分分析,可以通过可观测的原变量X直接求得主成分Y,并具有可逆性;因子分析中的载荷矩阵是不可逆的,只能通过可观测的原变量去估计不可观测的公共因子,即公共因子得分的估计值等于因子得分系数矩阵与原观测变量标准化后的矩阵相乘的结果。还有,主成分分析不可以像因子分析那样进行因子旋转处理。
5综合排名。主成分分析一般依据第一主成分的得分排名,若第一主成分不能完全代替原始变量,则需要继续选择第二个主成分、第三个等等,此时综合得分∑(各主成分得分×各主成分所对应的方差贡献率)主成分得分是将原始变量的标准化值,代入主成分表达式中计算得到;而因子分析的综合得分∑(各因子得分×各因子所对应的方差贡献率)÷∑各因子的方差贡献率,因子得分是将原始变量的标准化值,代入因子得分函数中计算得到。
区别中存联系,联系中显区别
由于上文提到主成分可表示为原观测变量的线性组合,其系数为原始变量相关矩阵的特征值所对应的特征向量,且这些特征向量正交,因此,从X到Y的转换关系是可逆的,便得到如下的关系:
(3)
下面对其只保留前m个主成分(贡献大),舍弃剩下贡献很小的主成分,得:
i12p
(4)
由此可见,式(4)在形式上已经与因子模型(2)忽略特殊因子后的模型即:(2)
相一致,且(j12…m)之间相互独立。由于模型(2)是因子分析中未进行因子载荷旋转时建立的模型,故如果不进行因子载荷旋转,许多应用者将容易把此时的因子分析理解成主成分分析,这显然是不正确的。
f然而此时的主成分的系数阵即特征向量与因子载荷矩阵确实存在如下关系:
主成分分析中,主成分的方差等于原始数据相关矩阵的特征根,其标准差也即特征根的平方根,于是可以将除以其标准差(单位化)后转化成合适的公因子,即令,,则式(4)变为:
(4)可得,(5)式(5)便是主成分系数矩阵与初始因子载荷阵之间的联系。不能简单地将初始因子载荷矩阵认为是主成分系数矩阵(特征向量矩阵),否则会造成偏差。
三、实证分析
通过实例来研究SPSS软件中的因子分析和主r