全球旧事资料 分类
14答案:AD和BC平行.理由如下:在Rt△AED和Rt△BFC中,∵AD=BC,DE=BF,∴Rt△ADE≌Rt△CBF,∴∠DAE=∠BCF,∴AD∥BC.15答案:证明:∵△ABC≌△A′B′C′,∴AB=A′B′,∠B=∠B′,又∵AD平分∠BCA,A′D′平分∠B′A′C′,∴∠BAD=
11∠BAC,∠B′A′D′=∠B′A′C′,所以∠BAD=∠B′A′D′,∴△ABD22
≌△A′B′D′,∴AD=A′D′.16答案:(1)在Rt△ADB和Rt△CEA中,AB=AC,AD=CE,所以Rt△ADB≌Rt△CEA,所以∠DAB=∠ECA,因为∠ACE+∠CAE=90°,所以∠DAB+∠EAC=90°,所以∠BAC=90°;(2)∠BAC仍是90°,证明过程与(1)相同.17答案:∵FE⊥AC于点E,∠ACB=90°,∴∠FEC=∠ACB=90°,∴∠F+∠ECFF=90°,又∵CD⊥AB于点D,∴∠A+∠ECFF=90°,∴∠A=∠F.在△ACB和△FEC中,∵∠A=∠F,∠ACB=∠FEC,CB=EC,∴△ACB≌△FEC.∴AB=FC.18答案:(1)证明:∵∠DAB=∠EAC,∠DAC=∠DAB+∠BAC,∠EAB=∠EAC+∠BAC∴∠DAC=∠EAB在△ADC和△ABE中,
fAEACB,∴△ADC≌△ABE(SAS)DACEAADAB
(2)∵△ADC≌△ABE,∴∠E=∠C,∵∠AFE=∠CFH,∠CAE=90°,∴∠E+∠AFE=90°,∴∠C+∠CFH=90°,∴∠CHF=90°,∴BE⊥CD.19答案:(1)证明:∵△ACB和△ECD都是等腰直角三角形,∴CE=CD,CA=CB,∠ACE=∠BCD=90°∴△ACE≌△BCD(2)∵△ACE≌△BCD,∴∠EAC=∠CBD,∵∠CBD+∠ADF=90°,∴∠EAC+∠ADF=90°,∴∠AFD=90°,∴AE⊥BD.20答案:∵AC⊥CF,DF⊥CF,∴∠ACB=∠DFE=90°,又∵EC=BF,∴EC+EB=BF+EB,∴CB=FE,CBFE,∴Rt△ACB≌Rt△DFE(HL)在Rt△ACB与Rt△DFE中,,∴AC=DF,ABDEACDF在△ACE与△DFB中ACEDFB,∴△ACE≌△DFB(SAS),∴AE=DBCEFB21证明:∵AC⊥CE,BD⊥DF,∴∠ACE=∠BDF=90°.在Rt△ACE和Rt△BDF中,AEBF,∴Rt△ACE≌Rt△BDF.ACBD∴CE=DF,∠AEC=∠BFD.∵∠AEC+∠CEF=180°,∠DFB+∠DFE=180°,∴∠CEF=∠DFE在△CEF和△DFE中CEFDCEFDFE,∴△CEF≌△DFE.EFEF
f《全等三角形的判定》练习三一、选择题1.如图,AD=AC,BD=BC,则图中∠1与∠2相等吗?_______________.
2.满足下列哪组条件时,就可以判定△ABC≌△DEF()A.AB=DE,BC=EF,∠A=∠EB.AB=DE,BC=EF,∠C=∠FC.∠B=∠D,AB=EF,∠A=∠ED.∠A=∠D,AB=DE,∠B=∠E3.如图,AB=DB,BC=BE,欲证△ABC≌△DBC,则需补充的条件是()A.∠A=∠DB.∠E=∠CDB.C.∠A=∠CD.∠1r
好听全球资料 返回顶部