《三角函数》教材分析及教学建议
一、新旧教材对比分析三角函数是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。这是学生在高中阶段学习的最后一个基本初等函数。三角恒等变换在数学中有一定的应用。三角函数与三角恒等变换是高中数学课程的传统内容,因此,本模块的内容属于“传统内容”。与以往的教科书相比较,本书在内容、要求以及处理方法上都有新的变化。1.以基本概念为主干内容贯穿本书,削枝强干,教材体系更显合理。“标准”设定的三角函数与三角恒等变换学习目标是:(1)通过实例,学习三角函数及其基本性质,体会三角函数在解决具有周期变化规律的问题中的作用;(2)运用向量的方法推导基本的三角恒等变换公式,由此出发导出其他的三角恒等变换公式,并运用这些公式进行简单的三角恒等变换。根据上述学习目标,在编写教科书过程中,特别注意突出主干内容,强调模型思想、数形结合思想。“三角函数”一章,突出了三角函数作为描述周期变化的数学模型这一本质。即通过现实世界的周期现象,在学生感受引入三角函数必要性的基础上,引出三角函数概念,研究三角函数的基本性质,并用三角函数的基础知识解决一些实际问题。与传统的处理方法不同,这里把三角恒等变换从三角函数中独立出来,其目的也是为了在三角函数一章中突出“函数作为描述客观世界变化规律的数学模型”这条主线。为了实现削枝强干的目标,教科书除了将三角恒等变换独立成章外,还在具体内容上进行了处理。在三角函数部分删减了任意角的余切、正割、余割,已知三角函数值求角以及符号arcsi
xarccosxarcta
x等内容。任意角、弧度制概念,同角三角函数的基本关系式,周期函数与最小正周期,三角函数的奇偶性等内容都降低了要求。三角恒等变换中,两角和与差的正余弦、正切公式,二倍角的正余弦、正切公式由原来的掌握减弱为能从两角差的余弦公式导出。积化和差、和差化积、半角公式都作为三角恒等变换基本训练的例题,不要求用积化和差、和差化积、半角公式作复杂的恒等变形。根据上述考虑,本模块先安排三角函数,再安排平面向量,然后再把三角恒等变换作为平面向量的一个应用,安排在第3章,紧接着再安排解三角形的内容(放在数学5的第1章)。这样的教材体系的合理性在于:(1)以已有的集合与函数、指数函数与对数函数的知识为基础,三角函数置于其上位概念(即函数)之下,使三角函数的学习有一个好的“先行组织者”,找到一个r