2011年高考考试说明(湖南省)数学(文)
根据教育部考试中心颁布的《普通高等学校招生全国统一考试大纲》(文科课程标准实验2011年版)(以下简称《大纲》),结合湖南省基础教育的实际情况,特制定《普通高等学校招生全国统一考试大纲说明》(文科课程标准实验2011年版)(供湖南省使用)(以下简称《说明》)的数学科部分。
Ⅰ.命题指导思想和命题原则
普通高等学校招生数学科的考试,是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试.命题根据高校合格新生应具备的数学素养,考查考生的数学基础知识、基本技能和数学思想方法,并在此基础上注重考查考生的数学基本能力、应用意识和创新意识,考查考生对数学本质的理解.同时,命题要切合湖南省高中数学教学和高中生数学水平的实际,充分体现《课程标准》中提出的基本理念,有利于数学课程改革的实施.
一、强化主干知识,从学科整体意义上设计试题
强化主干知识,从学科整体意义上设计试题,是落实课程目标“知识与技能”的一项重要措施.
考查考生对基础知识的掌握程度,是数学科高考的重要目标之一,对数学基础知识的考查,既要全面又要突出重点,重点知识,即学科的主干知识,它们是支撑学科知识体系的主要内容,对其考查要保持较高比例,并达到必要的深度,构成数学试题的主体.
从学科整体意义的高度设计试题是指命题时要注意知识的整体性,注意学科知识的内在联系,强调试题的综合性,在知识网络的交汇点设计试题.
高考命题强调知识之间的交叉、渗透和综合,是落实课程目标“过程与方法”的重要体现.按照高中数学课程标准编写的教材,一般都强调过程,突出思想,重视探究.其实,这些内容属于“程序性知识”的范畴,比那些具体的知识内容(“陈述性知识”)更为重要.
强调知识之间的交叉、渗透和综合,就是重视知识直接按的内在联系,将有关内容视为一个发展的过程和有机的整体,这有利于考查考生的思维过程和思维能力.
f二、注重通性通法,强调考查数学思想方法
加强数学思想方法的考查,是落实《课程标准》中“强调本质,注意适度形式化”理念的一个重要方面。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴涵在数学知识发生、发展和应用的过程中.因此,对于数学思想方法的考查必然要与数学知识的考查结合进行.通过对数学知识的考查,反映考生对数学思想和方法的理解与掌握程度,考查时,要从学科整体意义和思想含义上立意,注重通r