1=0(α≠β)的两个根,那么α22αβ的值
是
.
14.(3分)在一个不透明的袋子中装有除颜色外完全相同的4个红球和2个白球,摇匀后
随机摸出一个球,则摸出红球的概率为
.
15.(3分)二次函数y=ax2bx2(a≠0)的图象经过点(1,4),则代数式3ab的
值为
.
16.(3分)抛物线y=ax2bxc上部分点的横坐标x,纵坐标y的对应值如表:
x…2101
2
…
y…0
4
66
4
…
从表可知,下列说法中正确的是
.(填写序号)
①抛物线与x轴的一个交点为(3,0);②函数y=ax2bxc的最大值为6;
③抛物线的对称轴是直线x=;
第2页(共27页)
f④在对称轴左侧,y随x增大而增大.
17.(3分)二次函数y=2x2的图象如图所示,坐标原点O,点B1,B2,B3在y轴的正半轴
上,点A1,A2,A3在二次函数y=2x2位于第一象限的图象上,若△A1OB1,△A2B1B2,
△A3B2B3都为等腰直角三角形,且点A1,A2,A3均为直角顶点,则点A3的坐标是
.
18.(3分)已知实数m,
满足m
2=3,则代数式m22
26m2的最小值等于
.
三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)
19.(9分)解下列方程:
(1)(2xl)2=9;
(2)x22x1=0;
(3)(x3)2=4(3x).
20.(6分)已知关于x的方程x22xm1=0.
(1)若方程有两个不相等的实数根,求m的取值范围;
(2)若方程有一个实数根是5,求m的值及此时方程的另一个根.
21.(8分)已知一个二次函数图象上部分点的横坐标x,纵坐标y的对应值如表所示:
x
…
21
0
1
2
3
4
…
y
…
0
p
m
3
q
0
…
(1)求这个二次函数的表达式;
(2)表格中字母m=
;(直接写出答案)
(3)在给定的直角坐标系中,画出这个二次函数的图象;
(4)以上二次函数的图象与x轴围成的封闭区域内(不包括边界),横、纵坐标都是整
数的点共有
个.(直接写出结果)
第3页(共27页)
f22.(6分)已知关于x的一元二次方程x2(2m2)x(m22m)=0.
(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12x22=10,求m的值.23.(7分)现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,
篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.
(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是
;
(2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请
用画r