理解决实际问题,培养学生应用数学的意识和能力;(2)体会勾股定理的应用价值效果:学生对这样的实际问题很感兴趣,基本能把实际问题转化为数学问题并顺利解决
第五环节:追溯历史
激发情感
活动内容:由学生利用所搜集的与勾股定理相关的资料进行介绍国内调查组报告:用图2验证勾股定理的方法,据载最早是三国时期数学家赵爽在为《周髀算经》作注时给出的,我国历史上将图2弦上的正方形称为弦图2002年的数学家大会(ICM2002)在北京召开,这届大会会标的中央图案正是经过艺术处理的弦图,这既标志着中国古代的数学成就,又像一只转动的风车,欢迎来自世界各地的数学家们!国际调查组报告:勾股定理与第一次数学危机约公元前500年,毕达哥拉斯学派的弟子希帕索斯Hippasus发现了一个惊人的事实,一个正方形的对角线的长度是不可公度的按照毕达哥拉斯定理勾股定理,若正方形边长是1,则对角线的长不是一个有理数,它不能表示成两个整数之比,这一事实不但与毕氏学派的哲学信念大相径庭,而且建立在任何两个线段都可以公度基础上的几何学面临被推翻的威胁,第一次数学危机由此爆发据说,毕达哥拉斯学派对希帕索斯的发现十分惶恐、恼怒,为了保守秘密,最后将希帕索斯投入大海不能表示成两个整数之比的数,15世纪意大利著名画家达芬奇称之为“无理的数”,无理数的英文“irratio
al”原义就是“不可比”第一次数学危机一直持续到19世纪实数的基础建立以后才圆满解决我们将在下一章学习有关实数的知识趣闻调查组报告:勾股定理的总统证法在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景……他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论
4
ababcc
f
着什么,时而大声争论,时而小声探讨.由于好奇心驱使他循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形……于是这位中年人不再散步,立即回家,潜心探讨小男孩给他留下的难题他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法1876年4月1日,他在《新英格兰教育日志》上发表了他对勾股定理的这一证法1881年,这位中年人伽菲尔德就任美国第二十任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法说明:这个环节完全由学生来组织开展,教师可在两天前r